685 resultados para Consumption Volatility
Resumo:
Despite continuing developments in information technology and the growing economic significance of the emerging Eastern European, South American and Asian economies, international financial activity remains strongly concentrated in a relatively small number of international financial centres. That concentration of financial activity requires a critical mass of office occupation and creates demand for high specification, high cost space. The demand for that space is increasingly linked to the fortunes of global capital markets. That linkage has been emphasised by developments in real estate markets, notably the development of global real estate investment, innovation in property investment vehicles and the growth of debt securitisation. The resultant interlinking of occupier, asset, debt and development markets within and across global financial centres is a source of potential volatility and risk. The paper sets out a broad conceptual model of the linkages and their implications for systemic market risk and presents preliminary empirical results that provide support for the model proposed.
Resumo:
Whilst the vast majority of the research on property market forecasting has concentrated on statistical methods of forecasting future rents, this report investigates the process of property market forecast production with particular reference to the level and effect of judgemental intervention in this process. Expectations of future investment performance at the levels of individual asset, sector, region, country and asset class are crucial to stock selection and tactical and strategic asset allocation decisions. Given their centrality to investment performance, we focus on the process by which forecasts of rents and yields are generated and expectations formed. A review of the wider literature on forecasting suggests that there are strong grounds to expect that forecast outcomes are not the result of purely mechanical calculations.
Resumo:
Electricity consumption in Ghana is estimated to be increasing by 10% per annum due to the demand from the growing population. However, current sources of production (hydro and thermal facilities) generate only 66% of the current demand. Considering current trends, it is difficult to substantiate these basic facts, because of the lack of information. As a result, research into the existing sources of generating electricity, electricity consumption and prospective projects has been performed. This was achieved using three key techniques; review of literature, empirical studies and modelling. The results presented suggest that, current annual installed capacity of energy generation (i.e. 1960 MW) must be increased to 9,405.59 MW, assuming 85% plant availability. This is then capable to coop with the growing demand and it would give access to the entire population as well as support commercial and industrial activities for the growth of the economy. The prospect of performing this research is with the expectation to present an academic research agenda for further exploration into the subject area, without which the growth of the country would be stagnant.
Resumo:
Major research on equity index dynamics has investigated only US indices (usually the S&P 500) and has provided contradictory results. In this paper a clarification and extension of that previous research is given. We find that European equity indices have quite different dynamics from the S&P 500. Each of the European indices considered may be satisfactorily modelled using either an affine model with price and volatility jumps or a GARCH volatility process without jumps. The S&P 500 dynamics are much more difficult to capture in a jump-diffusion framework.
Resumo:
Recent research has suggested that forecast evaluation on the basis of standard statistical loss functions could prefer models which are sub-optimal when used in a practical setting. This paper explores a number of statistical models for predicting the daily volatility of several key UK financial time series. The out-of-sample forecasting performance of various linear and GARCH-type models of volatility are compared with forecasts derived from a multivariate approach. The forecasts are evaluated using traditional metrics, such as mean squared error, and also by how adequately they perform in a modern risk management setting. We find that the relative accuracies of the various methods are highly sensitive to the measure used to evaluate them. Such results have implications for any econometric time series forecasts which are subsequently employed in financial decisionmaking.