942 resultados para Constrained optimization problems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las redes del futuro, incluyendo las redes de próxima generación, tienen entre sus objetivos de diseño el control sobre el consumo de energía y la conectividad de la red. Estos objetivos cobran especial relevancia cuando hablamos de redes con capacidades limitadas, como es el caso de las redes de sensores inalámbricos (WSN por sus siglas en inglés). Estas redes se caracterizan por estar formadas por dispositivos de baja o muy baja capacidad de proceso y por depender de baterías para su alimentación. Por tanto la optimización de la energía consumida se hace muy importante. Son muchas las propuestas que se han realizado para optimizar el consumo de energía en este tipo de redes. Quizás las más conocidas son las que se basan en la planificación coordinada de periodos de actividad e inactividad, siendo una de las formas más eficaces para extender el tiempo de vida de las baterías. La propuesta que se presenta en este trabajo se basa en el control de la conectividad mediante una aproximación probabilística. La idea subyacente es que se puede esperar que una red mantenga la conectividad si todos sus nodos tienen al menos un número determinado de vecinos. Empleando algún mecanismo que mantenga ese número, se espera que se pueda mantener la conectividad con un consumo energético menor que si se empleara una potencia de transmisión fija que garantizara una conectividad similar. Para que el mecanismo sea eficiente debe tener la menor huella posible en los dispositivos donde se vaya a emplear. Por eso se propone el uso de un sistema auto-adaptativo basado en control mediante lógica borrosa. En este trabajo se ha diseñado e implementado el sistema descrito, y se ha probado en un despliegue real confirmando que efectivamente existen configuraciones posibles que permiten mantener la conectividad ahorrando energía con respecto al uso de una potencia de transmisión fija. ABSTRACT. Among the design goals for future networks, including next generation networks, we can find the energy consumption and the connectivity. These two goals are of special relevance when dealing with constrained networks. That is the case of Wireless Sensors Networks (WSN). These networks consist of devices with low or very low processing capabilities. They also depend on batteries for their operation. Thus energy optimization becomes a very important issue. Several proposals have been made for optimizing the energy consumption in this kind of networks. Perhaps the best known are those based on the coordinated planning of active and sleep intervals. They are indeed one of the most effective ways to extend the lifetime of the batteries. The proposal presented in this work uses a probabilistic approach to control the connectivity of a network. The underlying idea is that it is highly probable that the network will have a good connectivity if all the nodes have a minimum number of neighbors. By using some mechanism to reach that number, we hope that we can preserve the connectivity with a lower energy consumption compared to the required one if a fixed transmission power is used to achieve a similar connectivity. The mechanism must have the smallest footprint possible on the devices being used in order to be efficient. Therefore a fuzzy control based self-adaptive system is proposed. This work includes the design and implementation of the described system. It also has been validated in a real scenario deployment. We have obtained results supporting that there exist configurations where it is possible to get a good connectivity saving energy when compared to the use of a fixed transmission power for a similar connectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic importance weighting is proposed as a Monte Carlo method that has the capability to sample relevant parts of the configuration space even in the presence of many steep energy minima. The method relies on an additional dynamic variable (the importance weight) to help the system overcome steep barriers. A non-Metropolis theory is developed for the construction of such weighted samplers. Algorithms based on this method are designed for simulation and global optimization tasks arising from multimodal sampling, neural network training, and the traveling salesman problem. Numerical tests on these problems confirm the effectiveness of the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O empacotamento irregular de fita é um grupo de problemas na área de corte e empacotamento, cuja aplicação é observada nas indústrias têxtil, moveleira e construção naval. O problema consiste em definir uma configuração de itens irregulares de modo que o comprimento do contêiner retangular que contém o leiaute seja minimizado. A solução deve ser válida, isto é, não deve haver sobreposição entre os itens, que não devem extrapolar as paredes do contêiner. Devido a aspectos práticos, são admitidas até quatro orientações para o item. O volume de material desperdiçado está diretamente relacionado à qualidade do leiaute obtido e, por este motivo, uma solução eficiente pressupõe uma vantagem econômica e resulta em um menor impacto ambiental. O objetivo deste trabalho consiste na geração automática de leiautes de modo a obter níveis de compactação e tempo de processamento compatíveis com outras soluções na literatura. A fim de atingir este objetivo, são realizadas duas propostas de solução. A primeira consiste no posicionamento sequencial dos itens de modo a maximizar a ocorrência de posições de encaixe, que estão relacionadas à restrição de movimento de um item no leiaute. Em linhas gerais, várias sequências de posicionamentos são exploradas com o objetivo de encontrar a solução mais compacta. Na segunda abordagem, que consiste na principal proposta deste trabalho, métodos rasterizados são aplicados para movimentar itens de acordo com uma grade de posicionamento, admitindo sobreposição. O método é baseado na estratégia de minimização de sobreposição, cujo objetivo é a eliminação da sobreposição em um contêiner fechado. Ambos os algoritmos foram testados utilizando o mesmo conjunto de problemas de referência da literatura. Foi verificado que a primeira estratégia não foi capaz de obter soluções satisfatórias, apesar de fornecer informações importantes sobre as propriedades das posições de encaixe. Por outro lado, a segunda abordagem obteve resultados competitivos. O desempenho do algoritmo também foi compatível com outras soluções, inclusive em casos nos quais o volume de dados era alto. Ademais, como trabalho futuro, o algoritmo pode ser estendido de modo a possibilitar a entrada de itens de geometria genérica, o que pode se tornar o grande diferencial da proposta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive power is critical to the operation of the power networks on both safety aspects and economic aspects. Unreasonable distribution of the reactive power would severely affect the power quality of the power networks and increases the transmission loss. Currently, the most economical and practical approach to minimizing the real power loss remains using reactive power dispatch method. Reactive power dispatch problem is nonlinear and has both equality constraints and inequality constraints. In this thesis, PSO algorithm and MATPOWER 5.1 toolbox are applied to solve the reactive power dispatch problem. PSO is a global optimization technique that is equipped with excellent searching capability. The biggest advantage of PSO is that the efficiency of PSO is less sensitive to the complexity of the objective function. MATPOWER 5.1 is an open source MATLAB toolbox focusing on solving the power flow problems. The benefit of MATPOWER is that its code can be easily used and modified. The proposed method in this thesis minimizes the real power loss in a practical power system and determines the optimal placement of a new installed DG. IEEE 14 bus system is used to evaluate the performance. Test results show the effectiveness of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been reported that for certain colour samples, the chromatic adaptation transform CAT02 imbedded in the CIECAM02 colour appearance model predicts corresponding colours with negative tristimulus values (TSVs), which can cause problems in certain applications. To overcome this problem, a mathematical approach is proposed for modifying CAT02. This approach combines a non-negativity constraint for the TSVs of corresponding colours with the minimization of the colour differences between those values for the corresponding colours obtained by visual observations and the TSVs of the corresponding colours predicted by the model, which is a constrained non-linear optimization problem. By solving the non-linear optimization problem, a new matrix is found. The performance of the CAT02 transform with various matrices including the original CAT02 matrix, and the new matrix are tested using visual datasets and the optimum colours. Test results show that the CAT02 with the new matrix predicted corresponding colours without negative TSVs for all optimum colours and the colour matching functions of the two CIE standard observers under the test illuminants considered. However, the accuracy with the new matrix for predicting the visual data is approximately 1 CIELAB colour difference unit worse compared with the original CAT02. This indicates that accuracy has to be sacrificed to achieve the non-negativity constraint for the TSVs of the corresponding colours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is intended to provide conditions for the stability of the strong uniqueness of the optimal solution of a given linear semi-infinite optimization (LSIO) problem, in the sense of maintaining the strong uniqueness property under sufficiently small perturbations of all the data. We consider LSIO problems such that the family of gradients of all the constraints is unbounded, extending earlier results of Nürnberger for continuous LSIO problems, and of Helbig and Todorov for LSIO problems with bounded set of gradients. To do this we characterize the absolutely (affinely) stable problems, i.e., those LSIO problems whose feasible set (its affine hull, respectively) remains constant under sufficiently small perturbations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Huangtupo landslide is one of the largest in the Three Gorges region, China. The county-seat town of Badong, located on the south shore between the Xiling and Wu gorges of the Yangtze River, was moved to this unstable slope prior to the construction of the Three Gorges Project, since the new Three Gorges reservoir completely submerged the location of the old city. The instability of the slope is affecting the new town by causing residential safety problems. The Huangtupo landslide provides scientists an opportunity to understand landslide response to fluctuating river water level and heavy rainfall episodes, which is essential to decide upon appropriate remediation measures. Interferometric Synthetic Aperture Radar (InSAR) techniques provide a very useful tool for the study of superficial and spatially variable displacement phenomena. In this paper, three sets of radar data have been processed to investigate the Huangtupo landslide. Results show that maximum displacements are affecting the northwest zone of the slope corresponding to Riverside slumping mass I#. The other main landslide bodies (i.e. Riverside slumping mass II#, Substation landslide and Garden Spot landslide) exhibit a stable behaviour in agreement with in situ data, although some active areas have been recognized in the foot of the Substation landslide and Garden Spot landslide. InSAR has allowed us to study the kinematic behaviour of the landslide and to identify its active boundaries. Furthermore, the analysis of the InSAR displacement time-series has helped recognize the different displacement patterns on the slope and their relationships with various triggering factors. For those persistent scatterers, which exhibit long-term displacements, they can be decomposed into a creep model (controlled by geological conditions) and a superimposed recoverable term (dependent on external factors), which appears closely correlated with reservoir water level changes close to the river's edge. These results, combined with in situ data, provide a comprehensive analysis of the Huangtupo landslide, which is essential for its management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimization of chemical processes where the flowsheet topology is not kept fixed is a challenging discrete-continuous optimization problem. Usually, this task has been performed through equation based models. This approach presents several problems, as tedious and complicated component properties estimation or the handling of huge problems (with thousands of equations and variables). We propose a GDP approach as an alternative to the MINLP models coupled with a flowsheet program. The novelty of this approach relies on using a commercial modular process simulator where the superstructure is drawn directly on the graphical use interface of the simulator. This methodology takes advantage of modular process simulators (specially tailored numerical methods, reliability, and robustness) and the flexibility of the GDP formulation for the modeling and solution. The optimization tool proposed is successfully applied to the synthesis of a methanol plant where different alternatives are available for the streams, equipment and process conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many classification problems, it is necessary to consider the specific location of an n-dimensional space from which features have been calculated. For example, considering the location of features extracted from specific areas of a two-dimensional space, as an image, could improve the understanding of a scene for a video surveillance system. In the same way, the same features extracted from different locations could mean different actions for a 3D HCI system. In this paper, we present a self-organizing feature map able to preserve the topology of locations of an n-dimensional space in which the vector of features have been extracted. The main contribution is to implicitly preserving the topology of the original space because considering the locations of the extracted features and their topology could ease the solution to certain problems. Specifically, the paper proposes the n-dimensional constrained self-organizing map preserving the input topology (nD-SOM-PINT). Features in adjacent areas of the n-dimensional space, used to extract the feature vectors, are explicitly in adjacent areas of the nD-SOM-PINT constraining the neural network structure and learning. As a study case, the neural network has been instantiate to represent and classify features as trajectories extracted from a sequence of images into a high level of semantic understanding. Experiments have been thoroughly carried out using the CAVIAR datasets (Corridor, Frontal and Inria) taken into account the global behaviour of an individual in order to validate the ability to preserve the topology of the two-dimensional space to obtain high-performance classification for trajectory classification in contrast of non-considering the location of features. Moreover, a brief example has been included to focus on validate the nD-SOM-PINT proposal in other domain than the individual trajectory. Results confirm the high accuracy of the nD-SOM-PINT outperforming previous methods aimed to classify the same datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"UIUCDCS-R-75-726"

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.