888 resultados para Computer vision system


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computer vision is a field that uses techniques to acquire, process, analyze and understand images from the real world in order to produce numeric or symbolic information in the form of decisions [1]. This project aims to use computer vision to prepare an app to analyze a Madeira Wine and characterize it (identify its variety) by its color. Dry or sweet wines, young or old wines have a specific color. It uses techniques to compare histograms in order to analyze the images taken from a test sample inside a special container designed for this purpose. The color analysis from a wine sample using an image captured by a smartphone can be difficult. Many factors affect the captured image such as, light conditions, the background of the sample container due to the many positions the photo can be taken (different to capture facing a white wall or facing the floor for example). Using new technologies such as 3D printing it was possible to create a prototype that aims to control the effect of those external factors on the captured image. The results for this experiment are good indicators for future works. Although it’s necessary to do more tests, the first tests had a success rate of 80% to 90% of correct results. This report documents the development of this project and all the techniques and steps required to execute the tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Humans can perceive three dimension, our world is three dimensional and it is becoming increasingly digital too. We have the need to capture and preserve our existence in digital means perhaps due to our own mortality. We have also the need to reproduce objects or create small identical objects to prototype, test or study them. Some objects have been lost through time and are only accessible through old photographs. With robust model generation from photographs we can use one of the biggest human data sets and reproduce real world objects digitally and physically with printers. What is the current state of development in three dimensional reconstruction through photographs both in the commercial world and in the open source world? And what tools are available for a developer to build his own reconstruction software? To answer these questions several pieces of software were tested, from full commercial software packages to open source small projects, including libraries aimed at computer vision. To bring to the real world the 3D models a 3D printer was built, tested and analyzed, its problems and weaknesses evaluated. Lastly using a computer vision library a small software with limited capabilities was developed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work introduces a new method for environment mapping with three-dimensional information from visual information for robotic accurate navigation. Many approaches of 3D mapping using occupancy grid typically requires high computacional effort to both build and store the map. We introduce an 2.5-D occupancy-elevation grid mapping, which is a discrete mapping approach, where each cell stores the occupancy probability, the height of the terrain at current place in the environment and the variance of this height. This 2.5-dimensional representation allows that a mobile robot to know whether a place in the environment is occupied by an obstacle and the height of this obstacle, thus, it can decide if is possible to traverse the obstacle. Sensorial informations necessary to construct the map is provided by a stereo vision system, which has been modeled with a robust probabilistic approach, considering the noise present in the stereo processing. The resulting maps favors the execution of tasks like decision making in the autonomous navigation, exploration, localization and path planning. Experiments carried out with a real mobile robots demonstrates that this proposed approach yields useful maps for robot autonomous navigation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a multi-resolution, coarse-to-fine approach for stereo matching, where the first matching happens at a different depth for each pixel. The proposed technique has the potential of attenuating several problems faced by the constant depth algorithm, making it possible to reduce the number of errors or the number of comparations needed to get equivalent results. Several experiments were performed to demonstrate the method efficiency, including comparison with the traditional plain correlation technique, where the multi-resolution matching with variable depth, proposed here, generated better results with a smaller processing time

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aims to seek a more viable alternative for the calculation of differences in images of stereo vision, using a factor that reduces heel the amount of points that are considered on the captured image, and a network neural-based radial basis functions to interpolate the results. The objective to be achieved is to produce an approximate picture of disparities using algorithms with low computational cost, unlike the classical algorithms

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes a kinematic control scheme, using visual feedback for a robot arm with five degrees of freedom. Using computational vision techniques, a method was developed to determine the cartesian 3d position and orientation of the robot arm (pose) using a robot image obtained through a camera. A colored triangular label is disposed on the robot manipulator tool and efficient heuristic rules are used to obtain the vertexes of that label in the image. The tool pose is obtained from those vertexes through numerical methods. A color calibration scheme based in the K-means algorithm was implemented to guarantee the robustness of the vision system in the presence of light variations. The extrinsic camera parameters are computed from the image of four coplanar points whose cartesian 3d coordinates, related to a fixed frame, are known. Two distinct poses of the tool, initial and final, obtained from image, are interpolated to generate a desired trajectory in cartesian space. The error signal in the proposed control scheme consists in the difference between the desired tool pose and the actual tool pose. Gains are applied at the error signal and the signal resulting is mapped in joint incrementals using the pseudoinverse of the manipulator jacobian matrix. These incrementals are applied to the manipulator joints moving the tool to the desired pose