965 resultados para Computational time
Resumo:
In this paper I consider two objections raised by Nick Smith (1997) to an argument against the probability of time travel given by Paul Horwich (1995, 1987). Horwich argues that time travel leads to inexplicable and improbable coincidences. I argue that one of Smith's objections fails, but that another is correct. I also consider an instructive way to defend Horwich's argument against the second of Smith's objections, but show that it too fails. I conclude that unless there is something faulty in the conception of explanation implicit in Horwich's argument, time travel presents us with nothing that is inexplicable.
Resumo:
The purpose of the present study was to examine, in highly trained cyclists, the reproducibility of cycling time to exhaustion (T-max) at the power output equal to that attained at peak oxygen uptake ((V) over dot O(2)peak) during a progressive exercise test. Forty-three highly trained male cyclists (M +/- SD; age = 25 +/- 6yrs; weight = 75 +/- 7 kg; (V) over dot(2)peak = 64.8 +/- 5.2 ml.kg(-1) . min(-1)) performed two T-max tests one week apart. While the two measures of T-max were strongly related (r = 0.884; p < 0.001), T-max from the second test (245 +/- 57 s) was significantly higher than that of the first (237 +/- 57 s; p = 0.047; two-tailed). Within-subject variability in the present study was calculated to be 6 +/- 6%, which was lower than that previously reported for Tmax in sub-elite runners (25%). The mean T-max was significantly (p < 0.05) related to both the second ventilatory turnpoint (VT2; r = 0.38) and to (V) over dot O(2)peak (r = 0.34). Despite a relatively low within-subject coefficient of variation, these data demonstrate that the second score in a series of two T-max tests may be significantly greater than the first. Moreover the present data show that T-max in highly trained cyclists is moderately related to VT2 and (V) over dot O(2)peak.
Resumo:
The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Muhlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector - the director - of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8] and secondly to study the numerical performance of Eulerian (Fastflo)- and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.
Resumo:
Reviews the book "The Human Organization of Time: Temporal Realities and Experience," by Allen C. Bluedorn.
Resumo:
Allergy is a major cause of morbidity worldwide. The number of characterized allergens and related information is increasing rapidly creating demands for advanced information storage, retrieval and analysis. Bioinformatics provides useful tools for analysing allergens and these are complementary to traditional laboratory techniques for the study of allergens. Specific applications include structural analysis of allergens, identification of B- and T-cell epitopes, assessment of allergenicity and cross-reactivity, and genome analysis. In this paper, the most important bioinformatic tools and methods with relevance to the study of allergy have been reviewed.
Resumo:
Dormancy release was studied in four populations of annual ryegrass (Lolium rigidum) seeds to determine whether loss of dormancy in the field can be predicted from temperature alone or whether seed water content (WC) must also be considered. Freshly matured seeds were after-ripened at the northern and southern extremes of the Western Australian cereal cropping region and at constant 37degreesC. Seed WC was allowed to fluctuate with prevailing humidity, but full hydration was avoided by excluding rainfall. Dormancy was measured regularly during after-ripening by germinating seeds with 12-hourly light or in darkness. Germination was lower in darkness than in light/dark and dormancy release was slower when germination was tested in darkness. Seeds were consistently drier, and dormancy release was slower, during after-ripening at 37degreesC than under field conditions. However, within each population, the rate of dormancy release in the field (north and south) in terms of thermal time was unaffected by after-ripening site. While low seed WC slowed dormancy release in seeds held at 37degreesC, dormancy release in seeds after-ripened under Western Australian field conditions was adequately described by thermal after-ripening time, without the need to account for changes in WC elicited by fluctuating environmental humidity.
Resumo:
Polybia scutellaris constructs huge nests characterized by numerous spinal projections on the surface. We investigated the thermal characteristics of P scutellaris nests in order to determine whether their nest temperature is homeothermically maintained and whether the spines play a role in the thermoregulation of the nests. In order to examine these hypotheses, we measured the nest temperature in a active nest and in an abandoned nest. The temperature in the active nest was almost stable at 27 degrees C, whereas that of the abandoned nest varied with changes in the ambient temperature, suggesting that nest temperature was maintained by the thermogenesis of colony individuals. In order to predict the thermal properties of the spines, a numerical simulation was employed. To construct a 3D-model of a P scutellaris nest, the nest architecture was simplified into an outer envelope and the surface spines, for both of which the initial temperature was set at 27 degrees C. The physical properties of the simulated nest were regarded to be those of wood since the nest of this species is constructed from plant materials. When the model was exposed to cool air (12 degrees C), the temperature was lower in the models with more spines. On the other hand, when the nest was heated (42 degrees C), the temperature increase was smaller in models with more spines. It is suggested that the spines act as a heat radiator, not as an insulator, against the changes in ambient temperature.
Resumo:
ArtinM is a D-mannose binding lectin that has been arousing increasing interest because of its biomedical properties, especially those involving the stimulation of Th1 immune response, which confers protection against intracellular pathogens The potential pharmaceutical applications of ArtinM have motivated the production of its recombinant form (rArtinM) so that it is important to compare the sugar-binding properties of jArtinM and rArtinM in order to take better advantage of the potential applications of the recombinant lectin. In this work, a biosensor framework based on a Quartz Crystal Microbalance was established with the purpose of making a comparative study of the activity of native and recombinant ArtinM protein The QCM transducer was strategically functionalized to use a simple model of protein binding kinetics. This approach allowed for the determination of the binding/dissociation kinetics rate and affinity equilibrium constant of both forms of ArtinM with horseradish peroxidase glycoprotein (HRP), a N-glycosylated protein that contains the trimannoside Man alpha 1-3[Man alpha 1-6]Man, which is a known ligand for jArtinM (Jeyaprakash et al, 2004). Monitoring of the real-time binding of rArtinM shows that it was able to bind HRP, leading to an analytical curve similar to that of jArtinM, with statistically equivalent kinetic rates and affinity equilibrium constants for both forms of ArtinM The lower reactivity of rArtinM with HRP than jArtinM was considered to be due to a difference in the number of Carbohydrate Recognition Domains (CRDs) per molecule of each lectin form rather than to a difference in the energy of binding per CRD of each lectin form. (C) 2010 Elsevier B V. All rights reserved
Resumo:
Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(center dot-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q + 15](-) was described as being a reaction between the solvent system and the radical anion, Q(center dot-).The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.
Resumo:
A computational study of the isomers of tetrafluorinated [2.2]cyclophanes persubstituted in one ring, namely F-4-[2.2]paracyclophane (4), F-4-anti-[2.2]metacyclophane (5a), F-4-syn-[2.2]metacyclophane (5b), and F-4-[2.2]metaparacyclophane (6a and 6b), was carried out. The effects of fluorination on the geometries, relative energies, local and global aromaticity, and strain energies of the bridges and rings were investigated. An analysis of the electron density by B3PW91/6-31+G(d,p), B3LYP/6-31+G(d,p), and MP2/6-31+G(d,p) was carried out using the natural bond orbitals (NBO), natural steric analysis (NSA), and atoms in molecules (AIM) methods. The analysis of frontier molecular orbitals (MOs) was also employed. The results indicated that the molecular structure of [2.2]paracyclophane is the most affected by the fluorination. Isodesmic reactions showed that the fluorinated rings are more strained than the nonfluorinated ones. The NICS, HOMA, and PDI criteria evidenced that the fluorination affects the aromaticity of both the fluorinated and the nonfluorinated rings. The NBO and NSA analyses gave an indication that the fluorination increases not only the number of through-space interactions but also their magnitude. The AIM analysis suggested that the through-space interactions are restricted to the F-4-[2.2]metacyclophanes. In addition, the atomic properties, computed over the atomic basins, shave evidence that not only the substitution, but also the position of the bridges could affect the atomic charges. the first atomic moments, and the atomic volumes.
Resumo:
Three experiments explored the effectiveness of continuous auditory displays, or sonifications, for conveying information about a simulated anesthetized patient's respiration. Experiment 1 established an effective respiratory sonification. Experiment 2 showed an effect of expertise in the use of respiratory sonification and revealed that some apparent differences in sonification effectiveness could be accounted for by response bias. Experiment 3 showed that sonification helps anesthesiologists to maintain high levels of awareness of the simulated patient's state while performing other tasks more effectively than when relying upon visual monitoring of the simulated patient state. Overall, sonification of patient physiology beyond traditional pulse oximetry appears to be a viable and useful adjunct to visual monitors. Actual and potential applications of this research include monitoring in a wide variety of busy critical care contexts.
Resumo:
Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Objective: General practitioner recall of the 1992-96 'Stay on Your Feet'(SOYF) program and its influence on practice were surveyed five years post-intervention to gauge sustainability of the SOYF General Practice (GP) component. Methods: A survey assessed which SOYF components were still in existence, current practice related to falls prevention, and interest in professional development. All general practitioners (GPs) situated within the boundaries of a rural Area Health Service were mailed a survey in late 2001. Results: Response rate was 66.5% (139/ 209). Of 117 GPs in practice at the time of SOYF, 80.2% reported having heard of SOYF and 74.4% of those felt it had influenced practice. Half (50.9%) still had a copy of the SOYF GP resource and of those, 58.6% used it at least 'occasionally'. Three-quarters of GPs surveyed (75.2%) checked medications 'most/almost all' of the time with patients over 60 years; 46.7% assessed falls risk factors; 41.3% gave advice; and 22.6% referred to allied health practitioners. GPs indicated a strong interest in falls prevention- related professional development. There was no significant association between use of the SOYF resource package and any of the current falls prevention practices (all chi(2)>0.05). Conclusions and implications: There was high recall of SOYF and a general belief that it influenced practice. There was little indication that use of the resource had any lasting influence on GPs' practices. In future, careful thought needs to go into designing a program that has potential to affect long-term change in GPs' falls prevention practice.