972 resultados para Complex functions
Resumo:
An overview of dynamic self-organization phenomena in complex ionized gas systems, associated physical phenomena, and industrial applications is presented. The most recent experimental, theoretical, and modeling efforts to understand the growth mechanisms and dynamics of nano- and micron-sized particles, as well as the unique properties of the plasma-particle systems (colloidal, or complex plasmas) and the associated physical phenomena are reviewed and the major technological applications of micro- and nanoparticles are discussed. Until recently, such particles were considered mostly as a potential hazard for the microelectronic manufacturing and significant efforts were applied to remove them from the processing volume or suppress the gas-phase coagulation. Nowadays, fine clusters and particulates find numerous challenging applications in fundamental science as well as in nanotechnology and other leading high-tech industries.
Resumo:
The 3′ UTRs of eukaryotic genes participate in a variety of post-transcriptional (and some transcriptional) regulatory interactions. Some of these interactions are well characterised, but an undetermined number remain to be discovered. While some regulatory sequences in 3′ UTRs may be conserved over long evolutionary time scales, others may have only ephemeral functional significance as regulatory profiles respond to changing selective pressures. Here we propose a sensitive segmentation methodology for investigating patterns of composition and conservation in 3′ UTRs based on comparison of closely related species. We describe encodings of pairwise and three-way alignments integrating information about conservation, GC content and transition/transversion ratios and apply the method to three closely related Drosophila species: D. melanogaster, D. simulans and D. yakuba. Incorporating multiple data types greatly increased the number of segment classes identified compared to similar methods based on conservation or GC content alone. We propose that the number of segments and number of types of segment identified by the method can be used as proxies for functional complexity. Our main finding is that the number of segments and segment classes identified in 3′ UTRs is greater than in the same length of protein-coding sequence, suggesting greater functional complexity in 3′ UTRs. There is thus a need for sustained and extensive efforts by bioinformaticians to delineate functional elements in this important genomic fraction. C code, data and results are available upon request.
Resumo:
In Crypto’95, Micali and Sidney proposed a method for shared generation of a pseudo-random function f(·) among n players in such a way that for all the inputs x, any u players can compute f(x) while t or fewer players fail to do so, where 0⩽tfunctions, among the n players, each player gets a subset of S, in such a way that any u players together hold all the secret seeds in S while any t or fewer players will lack at least one element from S. The pseudo-random function is then computed as where fsi(·)'s are poly-random functions. One question raised by Micali and Sidney is how to distribute the secret seeds satisfying the above condition such that the number of seeds, d, is as small as possible. In this paper, we continue the work of Micali and Sidney. We first provide a general framework for shared generation of pseudo-random function using cumulative maps. We demonstrate that the Micali–Sidney scheme is a special case of this general construction. We then derive an upper and a lower bound for d. Finally we give a simple, yet efficient, approximation greedy algorithm for generating the secret seeds S in which d is close to the optimum by a factor of at most u ln 2.
Resumo:
In Crypto’95, Micali and Sidney proposed a method for shared generation of a pseudo-random function f(·) among n players in such a way that for all the inputs x, any u players can compute f(x) while t or fewer players fail to do so, where 0 ≤ t < u ≤ n. The idea behind the Micali-Sidney scheme is to generate and distribute secret seeds S = s1, . . . , sd of a poly-random collection of functions, among the n players, each player gets a subset of S, in such a way that any u players together hold all the secret seeds in S while any t or fewer players will lack at least one element from S. The pseudo-random function is then computed as where f s i (·)’s are poly-random functions. One question raised by Micali and Sidney is how to distribute the secret seeds satisfying the above condition such that the number of seeds, d, is as small as possible. In this paper, we continue the work of Micali and Sidney. We first provide a general framework for shared generation of pseudo-random function using cumulative maps. We demonstrate that the Micali-Sidney scheme is a special case of this general construction.We then derive an upper and a lower bound for d. Finally we give a simple, yet efficient, approximation greedy algorithm for generating the secret seeds S in which d is close to the optimum by a factor of at most u ln 2.
Resumo:
This chapter focuses on the physicality of the iPad as an object, and how that physicality affects the interactions children have with the device generally, and the apps specifically. Thinking about the physicality of the iPad is important because the materials, size, weight and appearance make the iPad quite unlike most other toys and equipment in the kindergarten space. Most strikingly, this physicality does not ‘represent’ the virtual vast dimensions of the iPad brought about through the diverse functions and contents of the apps contained in it. While the iPad is small enough and functional enough to be easily handled and operated even by young children, it is capable of performing highly complex, highly technological tasks that take it beyond its diminutive dimensions. This virtual-actual contrast is interesting to consider in relation to the other resources more commonly found in a kindergarten space. While objects such as toys, bricks, building materials often do prompt the child to imagine and invent beyond the physical boundaries of the toy, they not have the same types of virtual-actual contrasts of a digital device such as the iPad. How then, might children be drawn to the iPad because of its physical, technological and virtual difference? Particularly, how might this virtual-actual difference impact on the physical skills associated with writing and drawing: skills usually learnt through the use of a pencil and paper? While the research project did not set out to compare how digital and paper-based resources affect writing and drawing skills there was great interest to see how young children negotiated drawing and writing on the shiny glass surface of the iPad.
Resumo:
Here we report that the Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encodes a 29-kDa cytoplasmic protein that binds to mRNA in vivo. Rbp29p can be co-immunoprecipitated with the poly(A) tail-binding protein Pab1p from crude yeast extracts in a dosageand RNA-dependent manner. In addition, recombinant Rbp29p binds preferentially to poly(A) with nanomolar binding affinity in vitro. Although RBP29 is not essential for cell viability, its deletion exacerbates the slow growth phenotype of yeast strains harboring mutations in the eIF4G genes TIF4631 and TIF4632. Furthermore, overexpression of RBP29 suppresses the temperaturesensitive growth phenotype of specific tif4631, tif4632, and pab1 alleles. These data suggest that Rbp29p is an mRNA-binding protein that plays a role in modulating the expression of cytoplasmic mRNA.
Resumo:
Cleavage and polyadenylation factor (CPF) is a multi‐protein complex that functions in pre‐mRNA 3′‐end formation and in the RNA polymerase II (RNAP II) transcription cycle. Ydh1p/Cft2p is an essential component of CPF but its precise role in 3′‐end processing remained unclear. We found that mutations in YDH1 inhibited both the cleavage and the polyadenylation steps of the 3′‐end formation reaction in vitro. Recently, we demonstrated that an important function of CPF lies in the recognition of poly(A) site sequences and RNA binding analyses suggesting that Ydh1p/Cft2p interacts with the poly(A) site region. Here we show that mutant ydh1 strains are deficient in the recognition of the ACT1 cleavage site in vivo. The C‐terminal domain (CTD) of RNAP II plays a major role in coupling 3′‐end processing and transcription. We provide evidence that Ydh1p/Cft2p interacts with the CTD of RNAP II, several other subunits of CPF and with Pcf11p, a component of CF IA. We propose that Ydh1p/Cft2p contributes to the formation of important interaction surfaces that mediate the dynamic association of CPF with RNAP II, the recognition of poly(A) site sequences and the assembly of the polyadenylation machinery on the RNA substrate.
Independent functions of yeast Pcf11p in pre-mRNA 3' end processing and in transcription termination
Resumo:
Pcf11p, an essential subunit of the yeast cleavage factor IA, is required for pre‐mRNA 3′ end processing, binds to the C‐terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) and is involved in transcription termination. We show that the conserved CTD interaction domain (CID) of Pcf11p is essential for cell viability. Interestingly, the CTD binding and 3′ end processing activities of Pcf11p can be functionally uncoupled from each other and provided by distinct Pcf11p fragments in trans. Impaired CTD binding did not affect the 3′ end processing activity of Pcf11p and a deficiency of Pcf11p in 3′ end processing did not prevent CTD binding. Transcriptional run‐on analysis with the CYC1 gene revealed that loss of cleavage activity did not correlate with a defect in transcription termination, whereas loss of CTD binding did. We conclude that Pcf11p is a bifunctional protein and that transcript cleavage is not an obligatory step prior to RNAP II termination.
Resumo:
Bayesian experimental design is a fast growing area of research with many real-world applications. As computational power has increased over the years, so has the development of simulation-based design methods, which involve a number of algorithms, such as Markov chain Monte Carlo, sequential Monte Carlo and approximate Bayes methods, facilitating more complex design problems to be solved. The Bayesian framework provides a unified approach for incorporating prior information and/or uncertainties regarding the statistical model with a utility function which describes the experimental aims. In this paper, we provide a general overview on the concepts involved in Bayesian experimental design, and focus on describing some of the more commonly used Bayesian utility functions and methods for their estimation, as well as a number of algorithms that are used to search over the design space to find the Bayesian optimal design. We also discuss other computational strategies for further research in Bayesian optimal design.
Resumo:
The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models. The N-terminal R6G;E42G mutations of the 5-HT2B receptor also increase cell proliferation and slow its desensitization kinetics compared with the wild-type receptor, further supporting a role for the N terminus in transduction efficacy. Furthermore, by coexpressing a tethered wild-type 5-HT2B receptor N terminus with a 5-HT2B receptor bearing a N-terminal deletion, we were able to restore original coupling. This reversion to normal activity of a truncated 5-HT2B receptor by coexpression of the membrane-tethered wild-type 5-HT2B receptor N terminus was not observed using a membrane-tethered 5-HT2B receptor R6G;E42G N terminus. These data suggest that the N terminus exerts a negative control over basal as well as agonist-stimulated receptor activity that is lost in the R6G;E42G mutant. Our findings reveal a new and unanticipated role of the 5-HT2B receptor N terminus as a negative modulator, affecting both constitutive and agonist-stimulated activity. Moreover, our data caution against excluding the N terminus and extracellular loops in structural studies of this 7 transmembrane receptor family
Resumo:
Accurate three-dimensional representations of cultural heritage sites are highly valuable for scientific study, conservation, and educational purposes. In addition to their use for archival purposes, 3D models enable efficient and precise measurement of relevant natural and architectural features. Many cultural heritage sites are large and complex, consisting of multiple structures spatially distributed over tens of thousands of square metres. The process of effectively digitising such geometrically complex locations requires measurements to be acquired from a variety of viewpoints. While several technologies exist for capturing the 3D structure of objects and environments, none are ideally suited to complex, large-scale sites, mainly due to their limited coverage or acquisition efficiency. We explore the use of a recently developed handheld mobile mapping system called Zebedee in cultural heritage applications. The Zebedee system is capable of efficiently mapping an environment in three dimensions by continually acquiring data as an operator holding the device traverses through the site. The system was deployed at the former Peel Island Lazaret, a culturally significant site in Queensland, Australia, consisting of dozens of buildings of various sizes spread across an area of approximately 400 × 250 m. With the Zebedee system, the site was scanned in half a day, and a detailed 3D point cloud model (with over 520 million points) was generated from the 3.6 hours of acquired data in 2.6 hours. We present results demonstrating that Zebedee was able to accurately capture both site context and building detail comparable in accuracy to manual measurement techniques, and at a greatly increased level of efficiency and scope. The scan allowed us to record derelict buildings that previously could not be measured because of the scale and complexity of the site. The resulting 3D model captures both interior and exterior features of buildings, including structure, materials, and the contents of rooms.
Resumo:
Building healthcare resilience is an important step towards creating more resilient communities to better cope with future disasters. To date, however, there appears to be little literature on how the concept of healthcare resilience should be defined and operationalized with a conceptual framework. This article aims to build a comprehensive healthcare disaster management approach guided by the concept of resilience. Methods: Google and major health electronic databases were searched to retrieve critical relevant publications. A total of 61 related publications were included, to provide a comprehensive overview of theories and definitions relevant to disaster resilience. Results and Discussions: Resilience is an inherent and adaptive capacity to cope with future uncertainty, through multiple strategies with all hazards approaches, in an attempt to achieve a positive outcome with linkage and cooperation. Healthcare resilience can be defined as the capability of healthcare organisations to resist, absorb, and respond to the shock of disasters while maintaining the most essential functions, then recover to their original state or adapt to a new state. It can be assessed by criteria, namely: robustness, redundancy, resourcefulness; and a complex of key dimensions, namely: vulnerability and safety, disaster resources and preparedness, continuity of essential health services, recovery and adaptation. Conclusions: This new concept places healthcare organisations’ disaster capabilities, management tasks, activities and disaster outcomes together into a comprehensive whole view, using an integrated approach and establishing achievable goals.