954 resultados para Chemical Characterization
Resumo:
Due to human activity, large amounts of organic residue are generated daily. Therefore, an adequate use in agricultural activities requires the characterization of the main properties. The chemical and physical characterization is important when planning the use and management of organic residue. In this study, chemical and physical properties of charcoal, coffee husk, pine-bark, cattle manure, chicken manure, coconut fiber, sewage sludge, peat, and vermiculite were determined. The following properties were analyzed: N-NH4+, N-N0(3)-, and total concentrations of N, P, S, K, Ca, Mg, Mn, Zn, Cu, and B, as well as pH, Electrical Conductivity (EC) and bulk density. Coffee husk, sewage sludge, chicken manure and cattle manure were generally richer in nutrients. The EC values of these residues were also the highest (0.08 - 40.6 dS m-1). Peat and sewage sludge had the highest bulky density. Sodium contents varied from 0 to 4.75 g kg-1, with the highest levels in chicken manure, cattle manure and sewage sludge. Great care must be taken when establishing proportions of organic residues in the production of substrates with coffee husk, cattle or chicken manure or sewage sludge in the calculation of the applied fertilizer quantity in crop fertilization programs.
Resumo:
In the upper Jequitinhonha valley, state of Minas Gerais, Brazi, there are large plane areas known as "chapadas", which are separated by areas dissected by tributaries of the Jequitinhonha and Araçuaí rivers. These dissected areas have a surface drainage system with tree, shrub, and grass vegetation, more commonly known as "veredas", i.e., palm swamps. The main purpose of this study was to characterize soil physical, chemical and morphological properties of a representative toposequence in the watershed of the Vereda Lagoa do Leandro, a swamp near Minas Novas, MG, on "chapadas", the highlands of the Alto Jequitinhonha region Different soil types are observed in the landscape: at the top - Typic Haplustox (LVA), in the middle slope - Xanthic Haplustox (LA), at the footslope - Xanthic Haplustox, gray color, here called "Gray Haplustox" ("LAC") and, at the bottom of the palm swamp - Typic Albaquult (GXbd). These soils were first morphologically described; samples of disturbed and undisturbed soils were collected from all horizons and subhorizons, to evaluate their essential physical and chemical properties, by means of standard determination of Fe, Al, Mn, Ti and Si oxides after sulfuric extraction. The contents of Fe, Al and Mn, extracted with dithionite-citrate-bicarbonate and oxalate treatments, were also determined. In the well-drained soils of the slope positions, the typical morphological, physical and chemical properties of Oxisols were found. The GXbd sample, from the bottom of the palm swamp, is grayish and has high texture gradient (B/A) and massive structure. The reduction of the proportion of crystalline iron compounds and the low crystallinity along the slope confirmed the loss of iron during pedogenesis, which is reflected in the current soil color. The Si and Al contents were lowest in the "LAC" soil. There was a decrease of the Fe2O3/TiO2 ratio downhill, indicating progressive drainage restriction along the toposequence. The genesis and all physical and chemical properties of the soils at the footslope and the bottom of the palm swamp of the "chapadas" of the Alto Jequitinhonha region are strongly influenced by the occurrence of ground water on the surface or near the surface all year long, at present and/or in the past. Total concentrations of iron oxides, Fe d and Fe o in soils of the toposequence studied are related to the past and/or present soil colors and drainage conditions.
Resumo:
The Restinga vegetation consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga) and medium regeneration stages (low restinga), each with particular differentiating vegetation characteristics. The climate along the coast is tropical (Köppen). Of all ecosystems of the Atlantic Forest, Restinga is the most fragile and susceptible to anthropic disturbances. Plants respond to soil characteristics with physiological and morphological modifications, resulting in changes in the architecture (spatial configuration) of the root system. The purpose of this study was to characterize the soil fertility of high and low restinga forests, by chemical and physical parameters, and its relation to the root system distribution in the soil profile. Four locations were studied: (1) Ilha Anchieta State Park, Ubatuba; (2) two Ecological Stations of Jureia-Itatins and of Chauás, in the municipality of Iguape; (3) Vila de Pedrinhas in the municipality of Ilha Comprida; and (4) Ilha do Cardoso State Park, Cananeia. The soil fertility (chemical and physical properties) was analyzed in the layers 0-5, 0-10, 0-20, 20-40 and 40-60 cm. In addition, the distribution of the root system in the soil profile was evaluated, using digital images and the Spring program. It was concluded that the root system of all vegetation types studied is restricted to the surface layers, 0-10 and 10-20 cm, but occupies mainly the 0-10 cm layer (70 %); that soil fertility is low in all environments studied, with base saturation values below 16 %, since most exchange sites are occupied by aluminum; and that restinga vegetation is edaphic.
Resumo:
Lychnophora pohlii Sch. Bip. (Asteraceae), known as "Arnica mineira", is widely used in folk medicine and very abundant in the altitude vegetation of rocky grassland. The aim of this work was to study the density of this species and its relationship with soil parameters in rocky grassland in Diamantina, in the Upper Jequitinhonha region, Minas Gerais. Ten contiguous 20 x 50 m plots were marked (total sampled area 10,000 m²) on the campus Juscelino Kubitschek of the Federal University of Jequitinhonha and Mucuri Valleys (UFVJM). The plants in these plots were evaluated for frequency, dominance and density. The relationship between the density of this species with nine soil physical and chemical properties was analyzed by means of canonical correspondence analysis (CCA). The highest plant abundance (I) of the species Lychnophora pohlii Sch. Bip. was found in the vegetation sampling areas: plot 6 with 255 plants, plot 7 with 173, plot 8 with 189, plot 9 with 159, and plot 1 with 151 plants. In these areas, the floristic soil characteristics were similar, resulting in spatial proximity in the ACC diagrams. The density of Lychnophora pohlii was higher in plots with higher pH, P-rem and base saturation, the variables most strongly correlated with the first axis of canonical correspondence analysis.
Resumo:
Synthetic aluminum-substituted maghemites were characterized by total chemical analysis, powder X-ray diffraction (XRD), Mössbauer spectroscopy (ME), and vibrating sample magnetometry (VSM). The aim was to determine the structural, magnetic, and hyperfine properties of γ-Fe2-xAl xO3 as the Al concentration is varied. The XRD results of the synthetic products were indexed exclusively as maghemite. Increasing Al for Fe substitution decreased the mean crystalline dimension and shifted all diffraction peaks to higher º2θ angles. The a0 dimension of the cubic unit cell decreased with increasing Al according to the equation a o = 0.8385 - 3.63 x 10-5 Al (R²= 0.94). Most Mössbauer spectra were composed of one sextet, but at the highest substitution rate of 142.5 mmol mol-1 Al, both a doublet and sextet were obtained at 300 K. All hyperfine parameters from the sub-spectra were consistent with high-spin Fe3+ (0.2 a 0.7 mms-1) and suggested a strong superparamagnetic component associated with the doublet. The magnetic hyperfine field of the sextets decreased with the amount of Al-substitution [Bhf (T) = 49.751 - 0.1202Al; R² = 0.94] while the linewidth increased linearly. The saturation magnetization also decreased with increasing isomorphous substitution.
Resumo:
In the Alps, debris flow deposits generally contain < 5% clay-size particles, and the role of the surface-charged < 2 mu m particles is often neglected, although these particles may have a significant impact on the rheological properties of the interstitial fluid. The objective of this study was to compare debris flow deposits and parent materials from two neighbouring catchments of the Swiss Alps, with special emphasis on the colloidal constituents. The catchments are small in area (4 km(2)), 2.5 km long, similar in morphology, but different in geology. The average slopes are 35-40%. The catchments were monitored for debris flow events and mapped for surface aspect and erosion activity. Debris flow deposits and parent materials were sampled, the clay and silt fractions extracted and the bulk density, < 2 mm fraction bulk density, particle size distribution, chemical composition, cation exchange capacity (CEC) and mineralogy analysed. The results show that the deposits are similar to the parent screes in terms of chemical composition, but differ in terms of: (i) particle size distribution; and (ii) mineralogy, reactivity and density of the < 2 mm fraction. In this fraction, compared with the parent materials the deposits show dense materials enriched in coarse monocrystalline particles, of which the smallest and more reactive particles were leached. The results suggest that deposit samples should not be considered as representative of source or flow materials, particularly with respect to their physical properties.
Resumo:
Changes in land use and management can affect the dynamic equilibrium of soil systems and induce chemical and mineralogical alterations. This study was based on two long-term experiments (10 and 27 years) to evaluate soil used for no-tillage maize cultivation, with and without poultry litter application (NTPL and NTM), and with grazed native pasture fertilized with cattle droppings (GrP), on the chemical and mineralogical characteristics of a Rhodic Paleudult in Southern Brazil, in comparison with the same soil under native grassland (NGr). In the four treatments, soil was sampled from the 0.0-2.5 and 2.5-5.0 cm layers. In the air-dried fine soil (ADFS) fraction (∅ < 2 mm), chemical characteristics of solid and liquid phases and the specific surface area (SSA) were evaluated. The clay fraction (∅ < 0.002 mm) in the 0.0-2.5 cm layer was analyzed by X-ray diffraction (XRD) after treatments for identification and characterization of 2:1 clay minerals. Animal waste application increased the total organic C concentration (COT) and specific surface area (SSA) in the 0.0-2.5 cm layer. In comparison to NGr, poultry litter application (NTPL) increased the concentrations of Ca and CECpH7, while cattle droppings (GrP) increased the P and K concentrations. In the soil solution, the concentration of dissolved organic C was positively related with COT levels. With regard to NGr, the soil use with crops (NTM and NTPL) had practically no effect on the chemical elements in solution. On the other hand, the concentrations of most chemical elements in solution were higher in GrP, especially of Fe, Al and Si. The Fe and Al concentrations in the soil iron oxides were lower, indicating reductive/complexive dissolution of crystalline forms. The X-ray diffraction (XRD) patterns of clay in the GrP environment showed a decrease in intensity and reflection area of the 2:1 clay minerals. This fact, along with the intensified Al and Si activity in soil solution indicate dissolution of clay minerals in soil under cattle-grazed pasture fertilized with animal droppings.
Resumo:
Humic substances are the major components of soil organic matter. Among the three humic substance components (humic acid, fulvic acid, and humin), humin is the most insoluble in aqueous solution at any pH value and, in turn, the least understood. Humin has poor solubility mainly because it is tightly bonded to inorganic soil colloids. By breaking the linkage between humin and inorganic soil colloids using inorganic or organic solvents, bulk humin can be partially soluble in alkali, enabling a better understanding of the structure and properties of humin. However, the structural relationship between bulk humin and its alkaline-soluble (AS) and alkaline-insoluble (AIS) fractions is still unknown. In this study, we isolated bulk humin from two soils of Northeast China by exhaustive extraction (25 to 28 times) with 0.1 mol L-1 NaOH + 0.1 mol L-1 Na4P2O7, followed by the traditional treatment with 10 % HF-HCl. The isolated bulk humin was then fractionated into AS-humin and AIS-humin by exhaustive extraction (12 to 15 times) with 0.1 mol L-1 NaOH. Elemental analysis and solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy were used to characterize and compare the chemical structures of bulk humin and its corresponding fractions. The results showed that, regardless of soil types, bulk humin was the most aliphatic and most hydrophobic, AS-humin was the least aliphatic, and AIS-humin was the least alkylated among the three humic components. The results showed that bulk humin and its corresponding AS-humin and AIS-humin fractions are structurally differed from one another, implying that the functions of these humic components in the soil environment differed.
Resumo:
Peatlands are soil environments that accumulate water and organic carbon and function as records of paleo-environmental changes. The variability in the composition of organic matter is reflected in their morphological, physical, and chemical properties. The aim of this study was to characterize these properties in peatlands from the headwaters of the Rio Araçuaí (Araçuaí River) in different stages of preservation. Two cores from peatlands with different vegetation types (moist grassland and semideciduous seasonal forest) from the Rio Preto [Preto River] headwaters (conservation area) and the Córrego Cachoeira dos Borges [Cachoeira dos Borges stream] (disturbed area) were sampled. Both are tributaries of the Rio Araçuaí. Samples were taken from layers of 15 cm, and morphological, physical, and chemical analyses were performed. The 14C age and δ13C values were determined in three samples from each core and the vertical growth and organic carbon accumulation rates were estimated. Dendrograms were constructed for each peatland by hierarchical clustering of similar layers with data from 34 parameters. The headwater peatlands of the Rio Araçuaí have a predominance of organic material in an advanced stage of decomposition and their soils are classified as Typic Haplosaprists. The organic matter in the Histosols of the peatlands of the headwaters of the Rio Araçuaí shows marked differences with respect to its morphological, physical, and chemical composition, as it is influenced by the type of vegetation that colonizes it. The peat from the headwaters of the Córrego Cachoeira dos Borges is in a more advanced stage of degradation than the peat from the Rio Preto, which highlights the urgent need for protection of these ecosystems/soil environments.
Resumo:
ABSTRACT Preservation of mangroves, a very significant ecosystem from a social, economic, and environmental viewpoint, requires knowledge on soil composition, genesis, morphology, and classification. These aspects are of paramount importance to understand the dynamics of sustainability and preservation of this natural resource. In this study mangrove soils in the Subaé river basin were described and classified and inorganic waste concentrations evaluated. Seven pedons of mangrove soil were chosen, five under fluvial influence and two under marine influence and analyzed for morphology. Samples of horizons and layers were collected for physical and chemical analyses, including heavy metals (Pb, Cd, Mn, Zn, and Fe). The moist soils were suboxidic, with Eh values below 350 mV. The pH level of the pedons under fluvial influence ranged from moderately acid to alkaline, while the pH in pedons under marine influence was around 7.0 throughout the profile. The concentration of cations in the sorting complex for all pedons, independent of fluvial or marine influence, indicated the following order: Na+>Mg2+>Ca2+>K+. Mangrove soils from the Subaé river basin under fluvial and marine influence had different morphological, physical, and chemical characteristics. The highest Pb and Cd concentrations were found in the pedons under fluvial influence, perhaps due to their closeness to the mining company Plumbum, while the concentrations in pedon P7 were lowest, due to greater distance from the factory. For containing at least one metal above the reference levels established by the National Oceanic and Atmospheric Administration (United States Environmental Protection Agency), the pedons were classified as potentially toxic. The soils were classified as Gleissolos Tiomórficos Órticos (sálicos) sódico neofluvissólico in according to the Brazilian Soil Classification System, indicating potential toxicity and very poor drainage, except for pedon P7, which was classified in the same subgroup as the others, but different in that the metal concentrations met acceptable standards.
Resumo:
ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation), considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.
Resumo:
ABSTRACT Increasing attention has been given, over the past decades, to the production of exopolysaccharides (EPS) from rhizobia, due to their various biotechnological applications. Overall characterization of biopolymers involves evaluation of their chemical, physical, and biological properties; this evaluation is a key factor in understanding their behavior in different environments, which enables researchers to foresee their potential applications. Our focus was to study the EPS produced by Mesorhizobium huakuii LMG14107, M. loti LMG6125, M. plurifarium LMG11892,Rhizobium giardini bv. giardiniH152T, R. mongolense LMG19141, andSinorhizobium (= Ensifer)kostiense LMG19227 in a RDM medium with glycerol as a carbon source. These biopolymers were isolated and characterized by reversed-phase high-performance liquid chromatography (RP-HPLC), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopies. Maximum exopolysaccharide production was 3.10, 2.72, and 2.50 g L-1for the strains LMG6125, LMG19227, and LMG19141, respectively. The purified EPS revealed prominent functional reactive groups, such as hydroxyl and carboxylic, which correspond to a typical heteropolysaccharide. The EPS are composed primarily of galactose and glucose. Minor components found were rhamnose, glucuronic acid, and galacturonic acid. Indeed, from the results of techniques applied in this study, it can be noted that the EPS are species-specific heteropolysaccharide polymers composed of common sugars that are substituted by non-carbohydrate moieties. In addition, analysis of these results indicates that rhizobial EPS can be classified into five groups based on ester type, as determined from the 13C NMR spectra. Knowledge of the EPS composition now facilitates further investigations relating polysaccharide structure and dynamics to rheological properties.
Resumo:
ABSTRACT Humic acids (HA) are a component of humic substances (HS), which are found in nearly all soils, sediments, and waters. They play a key role in many, if not most, chemical and physical properties in their environment. Despite the importance of HA, their high complexity makes them a poorly understood system. Therefore, understanding the physicochemical properties and interactions of HA is crucial for determining their fundamental role and obtaining structural details. Cationic surfactants are known to interact electrostatically and hydrophobically with HA. Because they are a very well-known and characterized system, they offer a good choice as molecular probes for studying HA. The objective of this study was to evaluate the interaction between cationic surfactants and HA through isothermal titration calorimetry in a thermodynamic manner, aiming to obtain information about the basic structure of HA, the nature of this interaction, and if HA from different origins show different basic structures. Contrary to what the supramolecular model asserts, HA structure is not loosely held, though it may separate depending on the conditions the HA are subjected to in their milieu. It did not show any division or conformational change when interacting with surfactants. The basic structure of the HA remains virtually the same regardless of the different sources and compositions of these HA.
Resumo:
Charged and neutral oxygen vacancies in the bulk and on perfect and defective surfaces of MgO are characterized as quantum-mechanical subsystems chemically bonded to the host lattice and containing most of the charge left by the removed oxygens. Attractors of the electron density appear inside the vacancy, a necessary condition for the existence of a subsystem according to the atoms in molecules theory. The analysis of the electron localization function also shows attractors at the vacancy sites, which are associated to a localization basin shared with the valence domain of the nearest oxygens. This polyatomic superanion exhibits chemical trends guided by the formal charge and the coordination of the vacancy. The topological approach is shown to be essential to understand and predict the nature and chemical reactivity of these objects. There is not a vacancy but a coreless pseudoanion that behaves as an activated host oxygen.
Resumo:
A Knudsen flow reactor has been used to quantify surface functional groups on aerosols collected in the field. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. In the first part of this work, the reactivity of different probe gases on laboratory-generated aerosols (limonene SOA, Pb(NO3)2, Cd(NO3)2) and diesel reference soot (SRM 2975) has been studied. Five probe gases have been selected for the quantitative determination of important functional groups: N(CH3)3 (for the titration of acidic sites), NH2OH (for carbonyl functions), CF3COOH and HCl (for basic sites of different strength), and O3 (for oxidizable groups). The second part describes a field campaign that has been undertaken in several bus depots in Switzerland, where ambient fine and ultrafine particles were collected on suitable filters and quantitatively investigated using the Knudsen flow reactor. Results point to important differences in the surface reactivity of ambient particles, depending on the sampling site and season. The particle surface appears to be multi-functional, with the simultaneous presence of antagonistic functional groups which do not undergo internal chemical reactions, such as acid-base neutralization. Results also indicate that the surface of ambient particles was characterized by a high density of carbonyl functions (reactivity towards NH2OH probe in the range 0.26-6 formal molecular monolayers) and a low density of acidic sites (reactivity towards N(CH3)3 probe in the range 0.01-0.20 formal molecular monolayer). Kinetic parameters point to fast redox reactions (uptake coefficient ?0>10-3 for O3 probe) and slow acid-base reactions (?0<10-4 for N(CH3)3 probe) on the particle surface. [Authors]