958 resultados para CATALYTIC ACTIVITY CONCENTRATIONS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of titanium phosphinimide complexes [Ph2P(2-RO-C6H4)(2)TiCl2 (7, R = CH3; 8, R = CHMe2) and (PhP(2-Me2CHOC6H4)][THF]TiCl3 (9) have been prepared by reaction of TiCl4 with the corresponding phosphinimines under dehalosilylation. The structure of complex 9 has been determined by X-ray crystallography, and a solvent molecule THF was found to be coordinated with the central metal and the Ti-O bond was consistent with the normal Ti-O (donor) bond length. The complexes 7 and 8 displayed inactive to ethylene polymerization, and the complex 9 displayed moderate activity in the presence of modified methylaluminoxane (MMAO) or i-BU3Al/Ph3CB(C6F5)(4), and this should be partly attributed to coordination of THF with titanium and the steric effect of two iso-propoxyl. And catalytic activity up to 32.2 kg-PE/(mol-Ti h bar) was observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Group 4 complexes containing diphosphinoamide ligands [Ph2PNR](2)MCl2 (3: R = Bu-t, M = Ti; 4: R = Bu-t, M = Zr; 5: R = Ph, M = Ti; 6: R = Ph, M = Zr) were prepared by the reaction Of MCl4 (M = Ti; Zr) with the corresponding lithium phosphinoamides in ether or THF. The structure of [(Ph2PNBu)-Bu-t](2)TiCl2 (3) was determined by X-ray crystallography. The phosphinoamides functioned as eta(2)-coordination ligands in the solid state and the Ti-N bond length suggests it is a simple single bond. In the presence of modified methylaluminoxane or i-Bu3Al/Ph3BC(C6F5)(4), catalytic activity of up to 59.5 kg PE/mol cat h bar was observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tetrakis (N-methylpyridyl) porphyrinato] cobalt (CoTMPyP) and 1:12 silicotungstic acid (SiW12) were alternately deposited on a 4-aminobenzoic acid (4-ABA)-modified glassy carbon electrode through a layer-by-layer method. The resulting organic-inorganic hybrid films were characterized by cyclic voltammetry (CV) and UV/vis absorption spectroscopy. We proved that the prepared multilayer films are uniform and stable. SiW12-containing multilayer films (SiW12 as the outermost layer) exhibit remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). The kinetic constants for HER were comparatively investigated at different layers Of SiW12/CoTMPyP multilayer film-modified electrodes by hydrogen evolution voltammetry. In addition, rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) voltammetric methods confirm that SiW12/CoTMPyP (CoTMPyP as the outermost layer) multilayer films catalyze almost a two-electron reduction of O-2 to H2O2 in pH 1-6 buffer solutions. Furthermore, P2W18/CoTMPyP films were also assembled, and their catalytic activity for HER is very different from that Of SiW12/CoTMPyP multilayer films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a simple route for the preparation of Pt nanoparticles is described. PtCl62- and [tetrakis-(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) were assembled on a 4-aminobenzoic acid modified glassy carbon electrode through the layer-by-layer method. The three-dimensional Pt nanoparticle films are directly formed on an electrode surface by electrochemical reduction of PtCl62- sandwiched between CoTMPyP layers. Regular growth of the multilayer films is monitored by UV-vis spectroscopy. X-ray photoelectron spectroscopy verifies the constant composition of the multilayer films containing Pt nanoparticles. Atomic force microscopy proves that the as-prepared Pt nanoparticles are uniformily distributed with average particle diameters of 6-10 nm. The resulting multilayer films containing Pt nanoparticles on the modified electrode possess catalytic activity for the reduction of dissolved oxygen. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirm that Pt nanoparticle containing films can catalyze an almost four-electron reduction of O-2 to water in 0.5 M H2SO4 solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple method for the fabrication of Pd nanoparticles is described. The three-dimensional Pd nanoparticle films are directly formed on a gold electrode surface by simple electrodeposition at -200 mV from a solution of 1 M H2SO4+0.01 mM K2PdCl4. X-Ray photoelectron spectroscopy verifies the constant composition of the Pd nanoparticle films. Atomic force microscopy proves that the as-prepared Pd nanoparticles are uniformly distributed with an average particle diameter of 45-60 nm. It is confirmed that the morphology of the Pd nanoparticle films are correlated with the electrodeposition time and the state of the Au substrate. The resulting Pd-nanoparticle-film-modified electrode possesses high catalytic activity for the reduction of dissolved oxygen in 0.1 M KCl solution. Freshly prepared Pd nanoparticles can catalyze the reduction of O-2 by a 4-electron process at -200 mV in 0.1 M KCl, but this system is not very stable. The cathodic peaks corresponding to the reduction of O-2 gradually decrease with potential cycling and at last reach a steady state. Then two well-defined reduction peaks are observed at -390 and -600 mV vs. Ag/AgCl/KCl (sat.). Those two peaks correspond to a 2-step process for the 4-electron reduction pathway of O-2 in this neutral medium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A highly catalytic activity microperoxidase-11 (MP-11) biosensor for H2O2 was developed to immobilizing the heme peptide in didodecyldimethylammonium bromide (DDAB) lipid membrane. The enzyme electrode thus obtained responded to H2O2 without electron mediator or promoter, at a potential of +0.10 V versus Ag \ AgCl. A linear calibration curve is obtained over the range from 2.0 x 10(-5) to 2.4 x 10(-3) M. The biosensor responds to hydrogen peroxide in 15 s and has a detection limit of 8 x 10(-7) M (S/N = 3) Providing a natural environment with lipid membrane for protein immobilization and maintenance of protein functions is a suitable option for the design of biosensors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The polymerization of acrylonitrile was studied using ( diisopropylamido) his ( indenyl) lanthanides, Ind(2)LnN(i-Pr)(2)(Ln = Y, Yb) as a single-component catalyst. The effects of the amount of catalyst, monomer concentration and polymerization temperature on catalytic activity and molecular weight of polyacrylonitrile (PAN) were studied. The results show that the catalytic activity is raised obviously with rising polymerization temperature. The monomer conversion reaches 64% under polymerization temperature, monomer concentration and catalyst concentration are 50 degreesC, 5.1 mol . L (-1) and 0. 3 % (molar ratio) sequentially. The conversion and molecular weight of the polymer increase appreciably with adding additive, PhONa. When the molar ratio of PhONa to the catalyst is three I the conversion and the molecular weight is 76% and 1.32 x 10(4), respectively. The initiation mechanism for the polymerization of acrylonitrile was proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Direct electrochemistry of hemoglobin was observed in stable thin film composed of a natural lipid (egg-phosphatidylcholine) and hemoglobin on pyrolytic graphite (PG) electrode. Hemoglobin in lipid films shows thin layer electrochemistry behavior. The formal potential Edegrees' of hemoglobin in the lipid film was linearly varied with pH in the range from 3.5 to 7.0 with a slope of -46.4 mV pH(-1) Hemoglobin in the lipid film exhibited elegant catalytic activity for electrochemical reduction of H202, based which a unmediated biosensor for H2O2 was developed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction between polyaniline (PAn) and 2,5-dimercapto-1,3,4-thiadiazole (DMcT) was investigated by means of cyclic voltammetry and UV-visible spectroscopy. The results show that the polymerization-depolymerization reaction of DMcT or its dilithium salt Li(2)DMcT is a kinetically quasi-reversible process. PAn exhibits very weak electrochemical activity in neutral propylene carbonate. After doping with protonic acid, such as hydrochloric acid or maleic acid etc., however, it shows an extensively enhanced electroactivity. For the complex system, PAn-DMcT or PAn-Li(2)DMcT, polyaniline has no catalytic activity for the electrochemical polymerization-depolymerization reaction of DMcT or DMcT(2-). Instead, the enhancement of the electrochemical redox activity of PAn-DMcT system compared with that of PAn, DMcT, Li(2)DMcT, and PAn-Li(2)DMcT comes from the protonic doping of PAn by DMcT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PtCl62- anions were assembled on a glassy carbon electrode with [tetrakis(N-methylpyridyl)porphyrinato]cobalt cations through layer-by-layer method. then electrochemically reduced to yield zero valent Pt nanoparticles. Regular growth and surface morphology of the multilayer films were characterized by UV/vis. XPS and AFM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ethylene polymerization was carried out with zirconocene catalysts supported on montmorillonite (or functionalized montmorillonite). The functionalized montmorillonite was from simple ion exchange of [CH3O2CCH2NH3](+) (MeGlyH(+)) ions with interlamellar cations of layered montmorillonites. The functionalized montmorillonlites [high-purity montmorillonite (MMT)-MeGlyH(+)] had larger interlayer spacing (12.69 Angstrom) than montmorillonites without treatment (9.65 Angstrom). The zirconocene catalyst system [Cp2ZrCl2/methylaluminoxane (MAO)/MMT-MeGlyH(+)] had much higher Zr loading and higher activities than those of' other zirconocene catalyst systems (Cp2ZrCl2/MMT, Cp2ZrCl2/MMT-MeGlyH(+), Cp2ZrCl2/MAO/MMT, [CP2ZrCl](+)[BF4]/MMT, [Cp2ZrCl][BF4](-)/MMT-MeGlyH(+), [CP2ZrCl](+)[BF4](-)/MAO/MMT-MeGlyH(+), and [Cp2ZrCl](+)[BF4](-)/MAO/MMT). The polyethylenes with good bulk density were obtained from the catalyst systems, particularly (CP2ZrCl2/MAO/MMT-MeGlyH(1)). MeGlyH(+) and MAO seemed to play important roles for preparation of the supported zirconocenes and polymerization of ethylene. The difference in Zr loading and catalytic activity among the supported zirconocene catalysts is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[NH3CH2CH2CH2NH2][NH3CH2CH2CH2NH3](2)[(As2AsMo8V4O40)-As-III-Mo-V-O-IV].3H(2)O was hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Crystal data: monoclinic, C2/c, a = 45.375(9) Angstrom, b = 11.774(2) Angstrom, c = 23.438(5) Angstrom, beta = 96.62(3)degrees. X-ray crystallographic study showed that the crystal structure was constructed by bicapped alpha-Keggin fragments [(As2AsMo8V4O40)-As-III-Mo-V-O-IV](5-) polyoxoanion. The title compound had a high catalytic activity for the oxidation of benzaldehyde to benzoic acid using H2O2 as oxidant in a liquid-solid biphase system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A conductive carbon ceramic composite electrode (CCE) comprised of cc-type 1:12 phosphomolybdic acid (PMo12) and carbon powder in an organically modified silicate matrix was fabricated using a sol-gel method and characterized by scanning electron microscopy, cyclic voltammetry, and Osteryoung square-wave voltammetry. Osteryoung square-wave voltammograms of the modified electrode immersed in different acidic aqueous solutions present the dependence of current and redox potential on pH. The PMo12-doped CCE shows more reversible reaction kinetics, good stability and reproducibility, especially the renewal repeatability by simple polishing in the event of surface fouling or dopant leaching. Moreover, the modified electrode shows good catalytic activity for the electrochemical reduction of bromate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new type of inorganic-organic hybrid material incorporating carbon powder and alpha -type 2:18-molybdodiphosphate (P2Mo18) in a methyltrimethoxysilane (MTMOS) based gel has been produced by a sol-gel process and used to fabricate a chemically modified electrode. The P2Mo18-doped carbon ceramic composite electrode was characterized using SEM and cyclic voltammetry. Square-wave voltammetry with an excellent sensitivity was exploited to conveniently investigate the dependence of current and half-wave potential (E-1/2) on pH. The chemically modified electrode has some advantages over the modified film electrodes constructed by the conventional methods, such as long-term stability, reproducibility, and especially repeatability of surface-renewal by simple polishing in the event of surface fouling or dopant leaching. In addition, the modified electrode shows a good catalytic activity for the electrochemical reduction of bromate in an acidic aqueous solution. (C) 2000 Elsevier Science B.V. All rights reserved.