866 resultados para Arsenic, drinking water, community use
Resumo:
The urban growth without the prior infrastructure has caused many environmental impacts such as the damage to quality of the water resources in the cities. Along with natural scarcity in some regions, this is one of the factors that limit the availability of drinking water. As a result, the conservation of drinking water is becoming one of the major concerns in sustainable architectural projects. Within this context, this dissertation proposes to develop the design of an educational building focusing on water consumption rationalization. The proposed project is located in UFRN Campus at Currais Novos, an area of warm and dry climate and low rainfall. The proposal seeks to integrate ways to reduce water consumption o to architecture, in order to exploit the advantages and savings. After quantifying the benefits achieved, it was concluded that it is possible to reduce significantly the drinking water consumption in educational buildings in universities using three principles: reduction the water consumption at the point of use, replacement of the water source and internal recycling. Calculations and simulations indicated that the proposed building may have water consumption up to 56% lower than if it would be provided by conventional facilities. Rationalization of water consumption brings direct and indirect benefits, with influences on the environmental, social and economic fields
Resumo:
This work presents interactions between quantitative and qualitative river freshwater inputs and the shellfish farming (oyster and mussel) in the Pertuis Charentais. The quantity of freshwater (i.e. salinity) seems to have a weak influence on the shellfish farming contrarily to its quality determined by particulate and dissolved matters contained in the water. In autumn and winter, large precipitations have a "globally positive" effect amending the coastal ecosystem. Associated dissolved nutriments and the organic matter largely determine the quality of the coming spring growth for bred shellfish, itself controlling in turn the annual yield efficiencies. However, in winter their effects are postponed because of strong mineral load, low luminosity and temperature, then limiting the primary production. The spring contributions, directly linked to territorial practices, agriculture and tourism are more variable in quantity and quality from one year to another. They often correspond to high-risk inflows since numerous substances from anthropogenic watersheds can be found diluted in the coastal zone as in the Pertuis Charentais. Their impacts on in situ estuarine ecosystems are still poorly known since these substances are mainly studied and estimated in laboratory in controlled conditions. Several studies showed anthropogenic contaminations (i.e. cadmium, pesticides) could have significant direct or indirect effects on shellfish farming. For instance, the "summer" mortalities between 1990 and 2000 in the South of the Marennes-Oléron bay (MOB), that induced environmental and physiological oyster disorders, could be linked to pesticide effects, measured during consecutive years on the oyster bed of Ronce Perquis in the South of the MOB. The weak results from the spring larval rearing of the IFREMER experimental hatchery in the South of the bay, and chromosomal abnormalities measured on the stocks of wild oysters of the Pertuis could confirm a high-risk spring environment for the shellfish farming. In summer terrestrial inputs are reduced by low precipitations, anthropogenic water removals (drinking water, irrigation) and by plant evapotranspiration. Consequently certain years, a significant salinity increase in water masses of the Pertuis Charentais is observed. However, based on long-term observations, the significant interannual variability noticed in freshwater contributions constitutes one of the most important facts of these last years. When contributions are weak (i.e. 1991 and 2011), the mean annual salinity is 34.5 in the MOB. To the contrary, other years (i.e. 1977, 1981, 1983 and 1988), the mean salinity reduced to 30.5 shows the significant freshwater contributions to the bay. Elsewhere, particularly in the mediterranean region, oyster breeding water conditions characterized by high salinity values show the freshwater does not seem to be necessary for biological functions of the Pacific oyster Crassostrea gigas. Indeed, the oyster embryonic life in particular is well adapted to high salinity values as long as trophic resources are substantial and temperatures remain high. These two factors firstly condition the embryonic survival before the water salinity. Besides, in the Pertuis Charentais, wind conditions and the geographical bloodstock position rather determine the success of the larvae capture than seawater physic-chemical conditions. Finally, a misunderstanding still remains on summer freshwater contributions to the oyster larvae food supply.
Resumo:
A multi-residue gas chromatography-mass spectrometry method was developed in order to evaluate the presence of 39 pesticides of different chemical families (organophosphorus, triazines, imidazole, organochlorine), as well as some of their transformation products, in surface water samples from Ria de Aveiro. Ria de Aveiro is an estuarine coastal lagoon, located in the northern west region of Portugal, which receives inputs from agriculture, urban and industrial activities. The analytical method was developed and validated according international guidelines and showed good linearity, with correlation coefficients higher than 0.9949 for all compounds, adequate precision and accuracy, and high sensitivity. Pesticides were chosen from the priority pollutants list of the Directive 2008/105/EC of the European Parliament and of the Council (on environmental quality standards in the field of water policy), or were selected due their common use in agricultural practices. Some of these 39 pesticides are, or are suspected to be, endocrine disruptor compounds (EDCs), being capable of altering the endocrine system of wildlife and humans, causing form malfunction and ultimately health problems. Even those pesticides which are not EDCs, are known to be awfully toxic and have a recognised impact in human health. The aquatic environment is particularly susceptible to pollution due to intentional and accidental release of chemicals to water [3]. Pesticide contamination of surface water is a national issue as it is often used as drinking water. This concern is especially important in rural agricultural areas where population uses small private water supplies, regularly without any laboratory surveillance. The study was performed in seven sampling points and the results showed a considerable concern pesticide contamination of all samples.
Resumo:
This thesis is devoted to the development, synthesis, properties, and applications of nano materials for critical technologies, including three areas: (1) Microbial contamination of drinking water is a serious problem of global significance. About 51% of the waterborne disease outbreaks in the United States can be attributed to contaminated ground water. Development of metal oxide nanoparticles, as viricidal materials is of technological and fundamental scientific importance. Nanoparticles with high surface areas and ultra small particle sizes have dramatically enhanced efficiency and capacity of virus inactivation, which cannot be achieved by their bulk counterparts. A series of metal oxide nanoparticles, such as iron oxide nanoparticles, zinc oxide nanoparticles and iron oxide-silver nanoparticles, coated on fiber substrates was developed in this research for evaluation of their viricidal activity. We also carried out XRD, TEM, SEM, XPS, surface area measurements, and zeta potential of these nanoparticles. MS2 virus inactivation experiments showed that these metal oxide nanoparticle coated fibers were extremely powerful viricidal materials. Results from this research suggest that zinc oxide nanoparticles with diameter of 3.5 nm, showing an isoelectric point (IEP) at 9.0, were well dispersed on fiberglass. These fibers offer an increase in capacity by orders of magnitude over all other materials. Compared to iron oxide nanoparticles, zinc oxide nanoparticles didn’t show an improvement in inactivation kinetics but inactivation capacities did increase by two orders of magnitude to 99.99%. Furthermore, zinc oxide nanoparticles have higher affinity to viruses than the iron oxide nanoparticles in presence of competing ions. The advantages of zinc oxide depend on high surface charge density, small nanoparticle sizes and capabilities of generating reactive oxygen species. The research at its present stage of development appears to offer the best avenue to remove viruses from water. Without additional chemicals and energy input, this system can be implemented by both points of use (POU) and large-scale use water treatment technology, which will have a significant impact on the water purification industry. (2) A new family of aliphatic polyester lubricants has been developed for use in micro-electromechanical systems (MEMS), specifically for hard disk drives that operate at high spindle speeds (>15000rpm). Our program was initiated to address current problems with spin-off of the perfluoroether (PFPE) lubricants. The new polyester lubricant appears to alleviate spin-off problems and at the same time improves the chemical and thermal stability. This new system provides a low cost alternative to PFPE along with improved adhesion to the substrates. In addition, it displays a much lower viscosity, which may be of importance to stiction related problems. The synthetic route is readily scalable in case additional interest emerges in other areas including small motors. (3) The demand for increased signal transmission speed and device density for the next generation of multilevel integrated circuits has placed stringent demands on materials performance. Currently, integration of the ultra low-k materials in dual Damascene processing requires chemical mechanical polishing (CMP) to planarize the copper. Unfortunately, none of the commercially proposed dielectric candidates display the desired mechanical and thermal properties for successful CMP. A new polydiacetylene thermosetting polymer (DEB-TEB), which displays a low dielectric constant (low-k) of 2.7, was recently developed. This novel material appears to offer the only avenue for designing an ultra low k dielectric (1.85k), which can still display the desired modulus (7.7Gpa) and hardness (2.0Gpa) sufficient to withstand the process of CMP. We focused on further characterization of the thermal properties of spin-on poly (DEB-TEB) ultra-thin film. These include the coefficient of thermal expansion (CTE), biaxial thermal stress, and thermal conductivity. Thus the CTE is 2.0*10-5K-1 in the perpendicular direction and 8.0*10-6 K-1 in the planar direction. The low CTE provides a better match to the Si substrate which minimizes interfacial stress and greatly enhances the reliability of the microprocessors. Initial experiments with oxygen plasma etching suggest a high probability of success for achieving vertical profiles.
Resumo:
Nos dias de hoje a contaminação dos solos e águas subterrâneas com pesticidas através da agricultura tornou-se um problema. Problema este, considerado ainda maior nas áreas onde o abastecimento de água potável é quase totalmente à base de água subterrânea, causando deste modo risco para a saúde humana devido à exposição directa de possíveis resíduos de pesticidas na água potável. É certo que a persistência dos pesticidas no solo é importante para obter um bom controlo sob as ervas daninhas durante a sua época de crescimento, contudo o uso desses pesticidas contamina não só o solo como as águas superficiais. As questões acerca do uso de pesticidas na actualidade continuarão a persistir, uma vez que existem muitos factores e características inerentes a este processo que necessitam de ser abordadas e mais importante que isso estudadas, como por exemplo a sua degradação e toxicidade. Neste trabalho efectuou-se o encapsulamento de pesticidas em moléculas de β – ciclodextrina (β-CD). O que se pretende com este encapsulamento, é aumentar a hidrofilicidade do pesticida de forma a garantir que este persista o tempo suficiente permitindo um bom controlo das ervas daninhas, tendo sempre em conta as preocupações inerentes ao uso dos pesticidas, como por exemplo a dificuldade de biodegradação. O estudo centrou-se em torno de dois dos pesticidas mais utilizados em Portugal: MCPA e Bentazona. Estes herbicidas foram encapsulados individualmente na β-CD formando assim complexos, mais solúveis e eventualmente mais estáveis quimicamente garantindo uma redução dos efeitos dos pesticidas no meio ambiente. Este estudo foi dividido essencialmente em duas partes: a síntese e caracterização dos complexos pesticida-β-CD e posteriormente a avaliação da estabilidade química em solução aquosa e da solubilidade dos complexos formados. A utilização de diversas técnicas analíticas nomeadamente DSC, FTIR, Espectrofotometria de UV, HPLC e Electroquímica permitiram concluir que o pesticida MCPA encapsula pela acção da β-CD aquando do complexo formado em solução etanólica e numa proporção estequiométrica MCPA:β-CD de 1:2 respectivamente. Obteve-se para as várias soluções estudadas, todas elas com concentrações diferentes de β-CD, uma constante de estabilidade de 102,4. No caso da Bentazona, os resultados preliminares obtidos indiciam claramente a formação de um complexo com a β-CD para o complexo formado em solução etanólica.
Resumo:
Steel slag is a byproduct of iron and steel production by the metallurgical industries. Annually, 21 million tons of steel slag is produced in the United States. Most of the slag is landfilled, which represents a significant economic loss and a waste of valuable land space. Steel slag has great potential for the construction of highway embankments; however, its use has been limited due to its high swelling potential and alkalinity. The swelling potential of steel slags may lead to deterioration of the structural stability of highways, and high alkalinity poses an environmental challenge as it affects the leaching behavior of trace metals. This study seeks a methodology that promotes the use of steel slag in highway embankments by minimizing these two main disadvantages. Accelerated swelling tests were conducted to evaluate the swelling behavior of pure steel slag and water treatment residual (WTR) treated steel slag, where WTR is an alum-rich by-product of drinking water treatment plants. Sequential batch tests and column leach tests, as well as two different numerical analyses, UMDSurf and WiscLEACH, were carried out to check the environmental suitability of the methods. Tests were conducted to study the effect of a common borrow fill material that encapsulated the slag in the embankment and the effects of two subgrade soils on the chemical properties of slag leachate. The results indicated that an increase in WTR content in the steel slag-WTR mixtures yields a decrease in pH and most of the leached metal concentrations, except aluminum. The change in the levels of pH, after passing through encapsulation and subgrade, depends on the natural pHs of materials.
Resumo:
A preocupação com a poluição das águas por agrotóxicos tem aumentado, visto que aumentou o número de detecções de agrotóxicos em águas. A falta de avaliação da qualidade da água consumida pela população de áreas rurais onde não existe o abastecimento público de água potável, deve ser considerada, pois essas águas se encontram próximo a áreas de cultivo, onde há intensa aplicação de agrotóxicos. Nessas regiões, o abastecimento de água para as residências e para a irrigação é feito geralmente através das águas de poços. Neste trabalho, um método para determinação dos agrotóxicos carbofurano, clomazona, 2,4-D e tebuconazol em água subterrânea foi desenvolvido e validado. O método utilizou a Extração em Fase Sólida (SPE) e determinação por Cromatografia Líquida de Alta eficiência com Detecção por Arranjo de Diodos (HPLC-DAD) e confirmação por Cromatografia Líquida tandem Espectrometria de Massas (LC-MS/MS). Para a SPE utilizou-se cartuchos C18 de 200 mg, e eluição com 1 mL de metanol. Após a otimização dos parâmetros de extração e separação dos compostos, o método foi validado avaliando-se curva analítica, linearidade, limites de detecção e quantificação, precisão (repetitividade e precisão intermediária) e exatidão (recuperação). Todas as curvas analíticas apresentaram valores de r maiores que 0,99. Os LOQs para o método, considerando a etapa de pré-concentração de 250 vezes, foram de 0,2 µg L -1 para todos os agrotóxicos por HPLC-DAD e, por LC-MS/MS, 4,0 ng L -1 para clomazona, carbofurano e tebuconazol e de 40,0 ng L -1 para 2,4-D. As recuperações foram entre 60,3 e 107,7% para a repetitividade e entre 67,5 e 115,3% para a precisão intermediária, com RSD de 0,8 a 20,7% para todos os compostos por HPLC-DAD. Para o LC-MS/MS a precisão em termos de repetitividade, variou entre 0,97 e 20,7%, e as recuperações entre 67,0 e 108,9%. O método foi aplicado na determinação de agrotóxicos em amostras de águas subterrâneas durante um ano. Nas amostras foram detectados agrotóxicos em níveis de µg L -1 . Dentro do contexto atual da Química Analítica, de desenvolver métodos mais rápidos, que utilizem menor quantidade de solvente, de amostra e com altos fatores de enriquecimento, foi otimizado um método de extração para os agrotóxicos carbofurano, clomazona e tebuconazol utilizando a Microextração Líquido-Líquido Dispersiva (DLLME) e determinação por LC-MS/MS. Foram otimizados alguns parâmetros que influenciam no processo de extração, como: tipo e volume dos solventes dispersores e extratores, tempo de extração, força iônica e velocidade de centrifugação. Nas condições otimizadas, as recuperações para os níveis de concentração entre 0,02 e 2,0 g L -1 variaram entre 62,7 e 120,0%, com valores de RSD entre 1,9 e 9,1%. O LOQ do método foi de 0,02 µg L -1 para todos os compostos. Quando comparado com a SPE se demonstrou rápido, simples, de baixo custo, além de necessitar de menores volumes de amostra para determinação de agrotóxicos em águas. O método mostrou-se adequado à análise dos agrotóxicos em água subterrânea e todos os parâmetros de validação obtidos estão dentro dos limites sugeridos para validação de métodos cromatográficos
Resumo:
O uso mundial dos fármacos classificados como contaminantes emergentes tornouse um novo problema ambiental devido à possível contaminação das águas de superfície e de abastecimento, podendo impactar o meio ambiente e causar danos à saúde pública. Na cidade de Rio Grande, RS, Brasil, o suprimento de água potável é realizado pela CORSAN (Companhia Riograndense de Saneamento), que capta a água do Canal São Gonçalo, o qual estabelece uma ligação entre as lagoas: dos Patos e Mirim. Neste trabalho um método analítico empregando Extração em Fase Sólida (SPE) e Cromatografia Líquida com Fonte de Ionização Química a Pressão Atmosférica acoplada a Espectrometria de Massas (LC-APCI-MS/MS) foi desenvolvido e validado para a determinação dos fármacos atenolol, cafeína, diclofenaco, fluoxetina e sulfametoxazol em amostras de água superficial e de abastecimento público. O método foi validado conforme parâmetros do INMETRO e SANCO. Os limites de detecção do método variaram entre 0,053 – 0,53 µg L -1 , enquanto para os limites de quantificação a variação foi de 0,16 – 1,6 µg L-1 . Todos os compostos apresentaram excelente linearidade, com coeficiente de correlação maior do que 0,99. Os valores de recuperação estiveram na faixa de 70 a 120%, com RSD menores que 20% para todos os compostos. Através do monitoramento de múltiplas reações (MRM), duas transições diferentes (íon precursor – íon produto) foram selecionadas para cada composto, uma para quantificação e outra para confirmação, o que aumentou a seletividade do método. O efeito de matriz foi avaliado, e dois compostos apresentaram supressão de sinal. O efeito de matriz foi compensado com calibração dos padrões na matriz.
Resumo:
Today , Providing drinking water and process water is one of the major problems in most countries ; the surface water often need to be treated to achieve necessary quality, and in this way, technological and also financial difficulties cause great restrictions in operating the treatment units. Although water supply by simple and cheap systems has been one of the important objectives in most scientific and research centers in the world, still a great percent of population in developing countries, especially in rural areas, don't benefit well quality water. One of the big and available sources for providing acceptable water is sea water. There are two ways to treat sea water first evaporation and second reverse osmosis system. Nowadays R.O system has been used for desalination because of low budget price and easily to operate and maintenance. The sea water should be pretreated before R.O plants, because there is some difficulties in raw sea water that can decrease yield point of membranes in R.O system. The subject of this research may be useful in this way, and we hope to be able to achieve complete success in design and construction of useful pretreatment systems for R.O plant. One of the most important units in the sea water pretreatment plant is filtration, the conventional method for filtration is pressurized sand filters, and the subject of this research is about new filtration which is called continuous back wash sand filtration (CBWSF). The CBWSF designed and tested in this research may be used more economically with less difficulty. It consists two main parts first shell body and second central part comprising of airlift pump, raw water feeding pipe, air supply hose, backwash chamber and sand washer as well as inlet and outlet connections. The CBWSF is a continuously operating filter, i.e. the filter does not have to be taken out of operation for backwashing or cleaning. Inlet water is fed through the sand bed while the sand bed is moving downwards. The water gets filtered while the sand becomes dirty. Simultaneously, the dirty sand is cleaned in the sand washer and the suspended solids are discharged in backwash water. We analyze the behavior of CBWSF in pretreatment of sea water instead of pressurized sand filter. There is one important factor which is not suitable for R.O membranes, it is bio-fouling. This factor is defined by Silt Density Index (SDI).measured by SDI. In this research has been focused on decreasing of SDI and NTU. Based on this goal, the prototype of pretreatment had been designed and manufactured to test. The system design was done mainly by using the design fundamentals of CBWSF. The automatic backwash sand filter can be used in small and also big water supply schemes. In big water treatment plants, the units of filters perform the filtration and backwash stages separately, and in small treatment plants, the unit is usually compacted to achieve less energy consumption. The analysis of the system showed that it may be used feasibly for water treating, especially for limited population. The construction is rapid, simple and economic, and its performance is high enough because no mobile mechanical part is used in it, so it may be proposed as an effective method to improve the water quality and consequently the hygiene level in the remote places of the country.
Resumo:
Several Cronobacter outbreaks have implicated contaminated drinking water. This study assessed the impact of granular activated carbon (GAC) on the microbial quality of the water produced. A simulated water filter system was installed by filling plastic columns with sterile GAC, followed by sterile water with a dilute nutrient flowing through the column at a steady rate. Carbon columns were inoculated with Cronobacter on the surface, and the effluent monitored for Cronobacter levels. During a second phase, commercial faucet filters were distributed to households for 4-month use. Used filters were backwashed with sterile peptone water, and analyzed for Cronobacter, total aerobic plate count, coliform bacteria and Enterobacteriaceae. Cronobacter colonized the simulated GAC and grew when provided minimal levels of nutrients. Backwashed used filters used in home settings yielded presumptive Escherichia coli, Pseudomonas and other waterborne bacteria. Presumptive Cronobacter strains were identified as negative through biochemical and genetic test.
Resumo:
El 6.5% de la población ecuatoriana son adultos mayores, falleciendo alrededor de 34.000 cada año. Su bienestar constituye una preocupación política y social, pero sus derechos muchas veces son vulnerados por una sociedad que vive su cotidianidad en lucha contra el más fuerte y olvida extender la mano a los protagonistas del pasado, quienes muestran un impacto negativo en su salud integral. METODOLOGÍA: Estudio descriptivo en 40 adultos mayores de la comunidad de Maluay (95,2%) en quienes se valoró la salud integral a través del uso de formularios del MSP. También, se aplicaron técnicas documentales y de observación directa para recolección de datos. RESULTADOS La mayoría son mujeres entre 65 y 74 años, media de 69.5 años, analfabetos/as (93%), sin actividad o dedicados al trabajo de campo y no cuentan con agua potable. Sus condiciones se ven afectadas por enfermedades crónicas degenerativas que les confiere cierto grado de discapacidad. Presentan riesgo de desnutrición (73%), déficit cognitivo (65%), casi la mitad con cierta dificultad en el equilibrio y la marcha. Aunque sean independientes en las actividades básicas de la vida diaria, necesitan cierta ayuda en actividades instrumentales. Socialmente son aceptados (78%). DISCUSIÓN La calidad de vida de los adultos mayores, especialmente en sectores rurales no es apropiada pese al respaldo de políticas públicas. El conocimiento de los factores de riesgo y sus necesidades para elaborar estrategias de prevención y promoción con un enfoque holístico debe ser la prioridad en la Salud Pública, pues atravesamos una transición que se dirige a los riesgos emergentes asociados con la industrialización, la urbanización y el envejecimiento poblacional
Resumo:
The urban growth without the prior infrastructure has caused many environmental impacts such as the damage to quality of the water resources in the cities. Along with natural scarcity in some regions, this is one of the factors that limit the availability of drinking water. As a result, the conservation of drinking water is becoming one of the major concerns in sustainable architectural projects. Within this context, this dissertation proposes to develop the design of an educational building focusing on water consumption rationalization. The proposed project is located in UFRN Campus at Currais Novos, an area of warm and dry climate and low rainfall. The proposal seeks to integrate ways to reduce water consumption o to architecture, in order to exploit the advantages and savings. After quantifying the benefits achieved, it was concluded that it is possible to reduce significantly the drinking water consumption in educational buildings in universities using three principles: reduction the water consumption at the point of use, replacement of the water source and internal recycling. Calculations and simulations indicated that the proposed building may have water consumption up to 56% lower than if it would be provided by conventional facilities. Rationalization of water consumption brings direct and indirect benefits, with influences on the environmental, social and economic fields
Resumo:
New bone chars for fluoride adsorption from drinking water have been synthetized via metallic doping using aluminum and iron salts. A detailed statistical analysis of the metal doping process using the signal-to-noise ratios from Taguchi's experimental designs and its impact on the fluoride adsorption properties of modified bone chars have been performed. The best conditions, including the proper metallic salt, for metal doping were identified to improve the fluoride uptakes of modified bone chars. Results showed that the fluoride adsorption properties of bone chars can be enhanced up to 600% using aluminum sulfate for the surface modification. This aluminum-based adsorbent showed an adsorption capacity of 31 mg/g, which outperformed the fluoride uptakes reported for several adsorbents. Surface interactions involved in the defluoridation process were established using FTIR, DRX and XPS analysis. Defluoridation using the metal-doped bone chars occurred via an ion exchange process between fluoride ions and the hydroxyl groups on the adsorbent surface, whereas the Al(OH)xFy, FexFy, and CaF2 interactions could play also an important role in the removal process. These metal-doped adsorbents anticipate a promising behavior in water treatment, especially in developing countries where the efficiency – cost tradeoff is crucial for implementing new defluoridation technologies.
Resumo:
The effects of serum and brain calcium concentration on rat behavior were tested by maintaining animals on either distilled water (N = 60) or water containing 1% calcium gluconate (N = 60) for 3 days. Animals that were maintained on high calcium drinking water presented increased serum calcium levels (control = 10.12 ± 0.46 vs calcium treated = 11.62 ± 0.51 µg/dl). Increase of brain calcium levels was not statistically significant. In the behavioral experiments each rat was used for only one test. Rats that were maintained on high calcium drinking water showed increased open-field behavior of ambulation (20.68%) and rearing (64.57%). on the hole-board, calcium-supplemented animals showed increased head-dip (67%) and head-dipping (126%), suggesting increased ambulatory and exploratory behavior. The time of social interaction was normal in animals maintained on drinking water containing added calcium. Rats supplemented with calcium and submitted to elevated plus-maze tests showed a normal status of anxiety and elevated locomotor activity. We conclude that elevated levels of calcium enhance motor and exploratory behavior of rats without inducing other behavioral alterations. These data suggest the need for a more detailed analysis of several current proposals for the use of calcium therapy in humans, for example in altered blood pressure states, bone mineral metabolism disorders in the elderly, hypocalcemic states, and athletic activities.
Resumo:
Lake sturgeon (Acipenser fulvescens) were historically abundant in the Huron-Erie Corridor (HEC), a 160 km river/channel network composed of the St. Clair River, Lake St. Clair, and the Detroit River that connects Lake Huron to Lake Erie. In the HEC, most natural lake sturgeon spawning substrates have been eliminated or degraded as a result of channelization and dredging. To address significant habitat loss in HEC, multi-agency restoration efforts are underway to restore spawning substrate by constructing artificial spawning reefs. The main objective of this study was to conduct post-construction monitoring of lake sturgeon egg deposition and larval emergence near two of these artificial reef projects; Fighting Island Reef in the Detroit River, and Middle Channel Spawning Reef in the lower St. Clair River. We also investigated seasonal and nightly timing of larval emergence, growth, and vertical distribution in the water column at these sites, and an additional site in the St. Clair River where lake sturgeon are known to spawn on a bed of ~100 year old coal clinkers. From 2010-12, we collected viable eggs and larvae at all three sites indicating that these artificial reefs are creating conditions suitable for egg deposition, fertilization, incubation, and larval emergence. The construction methods and materials, and physical site conditions present in HEC artificial reef projects can be used to inform future spawning habitat restoration or enhancement efforts. The results from this study have also identified the likelihood of additional uncharacterized natural spawning sites in the St. Clair River. In addition to the field study, we conducted a laboratory experiment involving actual substrate materials that have been used in artificial reef construction in this system. Although coal clinkers are chemically inert, some trace elements can be reincorporated with the clinker material during the combustion process. Since lake sturgeon eggs and larvae are developing in close proximity to this material, it is important to measure the concentration of potentially toxic trace elements. This study focused on arsenic, which occurs naturally in coal and can be toxic to fishes. Total arsenic concentration was measured in samples taken from four substrate treatments submerged in distilled water; limestone cobble, rinsed limestone cobble, coal clinker, and rinsed coal clinker. Samples were taken at three time intervals: 24 hours, 11 days, and 21 days. ICP-MS analysis showed that concentrations of total arsenic were below the EPA drinking water standard (10 ppb) for all samples. However, at the 24 hour sampling interval, a two way repeated measures ANOVA with a Holm-Sidak post hoc analysis (α= 0.05) showed that the mean arsenic concentration was significantly higher in the coal clinker substrate treatment then in the rinsed coal clinker treatment (p=0.006), the limestone cobble treatment (p