986 resultados para Androgen Responsive Protein
Resumo:
The genomic sequences of several RNA plant viruses including cucumber mosaic virus, brome mosaic virus, alfalfa mosaic virus and tobacco mosaic virus have become available recently. The former two viruses are icosahedral while the latter two are bullet and rod shaped, respectively in particle morphology. The non-structural 3a proteins of cucumber mosaic virus and brome mosaic virus have an amino acid sequence homology of 35% and hence are evolutionarily related. In contrast, the coat proteins exhibit little homology, although the circular dichroism spectrum of these viruses are similar. The non-coding regions of the genome also exhibit variable but extensive homology. Comparison of the brome mosaic virus and alfalfa mosaic virus sequences reveals that they are probably related although with a much larger evolutionary distance. The polypeptide folds of the coat protein of three biologically distinct isometric plant viruses, tomato bushy stunt virus, southern bean mosaic virus and satellite tobacco necrosis virus have been shown to display a striking resemblance. All of them consist of a topologically similar 8-standard β-barrel. The implications of these studies to the understanding of the evolution of plant viruses will be discussed.
Resumo:
Immunoneutralization of maternal RCP results in a >90% decrease in the content and the incorporation of [2-14C]riboflavin into embryonic FAD as well as a percentage redistribution of both embryonic FMN and riboflavin. This is unaccompanied by any discernible changes in flavin distribution pattern in the maternal liver. Embryonic α-glycerophosphate dehydrogenase and NADPH-cytochrome c reductase register significant decreases in activities in the RCP antiserum-treated rats. These alterations readily explain the arrest of foetal growth culminating in pregnancy termination in the antiserum-treated animals.
Resumo:
Recent experiments in this laboratory on structural transformations caused by controlled dehydration of protein crystals have been reviewed. X-ray diffraction patterns of the following crystals have been examined under varying conditions of environmental humidity in the relative humidity range of 100-75%: a new crystal form of bovine pancreatic ribonuclease A grown from acetone solution in tris buffer (I), the well-known monoclinic form of the protein grown from aqueous ethanol (II), the same form grown from a solution of 2-methyl pentan-2,4-diol in phosphate buffer (III), tetragonal (IV), orthorhombic (V), monoclinic (VI) and triclinic (VII) hen egg white lysozyme, porcine 2 Zn insulin (VIII), porcine 4 Zn insulin (IX) and the crystals of concanavalin A(X). I, II, IV, V and VI undergo one or more transformations as evidenced by discontinuous changes in the unit cell dimensions, the diffraction pattern and the solvent content. Such water-mediated transformations do not appear to occur in the remaining crystals in the relative humidity range explored. The relative humidity at which the transformation occurs is reduced when 2-methyl pentan-2,4-diol is present in the mother liquor. The transformations are affected by the crystal structure but not by the amount of solvent in the crystals. The X-ray investigations reviewed here and other related investigations emphasize the probable importance of water-mediated transformations in exploring hydration of proteins and conformational transitions in them.
Resumo:
To evaluate the relative efficacy of nonele-mental versus semielemental enteral supplements for nutritional rehabilitation of cystic fibrosis (CF) patients, whole-body protein turnover using the [15N]glycine method was studied in nine malnourished CF patients during enteral feedings, in a block design study compar-ing a semielemental formula (Criticare), a higher protein density but nonelemental formula (Traumacal) (T), and a nonelemental formula that had been modified to become isocaloric and isonitrogenous to the semielemental formula (modified Traumacal, MT). No significant differences in rates of protein synthesis or catabolism were observed comparing the three formulas. However the higher protein density nonelemental formula resulted in higher net protein deposition compared to the other two formulas (T + 0.42 g kg-110 h-1versus 0.33 g kg-110 h-1for Criticare and-0.59 g kg-110 h-1for MT), although this was significant (p < 0.05) for the MT versus T comparison only. This study lends support to the use of less expensive nonelemental formulas for the nutritional management of malnourished patients with CF. © 1990 Raven Press Ltd, New York.
Resumo:
We describe a child bom to unrelated parents who developed severe protracted secretory type diarrhea associated with subtotal villus atrophy and intestinal inflammation at the age of 19 months. No infectious, metabolic, or anatomical basis for this condition was identified and the child required total parenteral nutrition for a period of 18 months despite trials of special enteral formulas, steroids, and anti-inflammatory agents. This refractory “enteropathy” responded dramatically to the introduction of cyclosporin, with cessation of the secretory diarrhea, recovery from the enteropathy, and cessation of parenteral nutrition. The symptoms relapsed when cyclosporin was briefly discontinued and improved following reintroduction of this drug. This experience suggests a role for immune factors in the pathogenesis of the enteropathy in this case and that a trial of cyclosporin is worthy of consideration in similar cases. © 1990 Raven Press, Ltd., New York.
Resumo:
Communication within and across proteins is crucial for the biological functioning of proteins. Experiments such as mutational studies on proteins provide important information on the amino acids, which are crucial for their function. However, the protein structures are complex and it is unlikely that the entire responsibility of the function rests on only a few amino acids. A large fraction of the protein is expected to participate in its function at some level or other. Thus, it is relevant to consider the protein structures as a completely connected network and then deduce the properties, which are related to the global network features. In this direction, our laboratory has been engaged in representing the protein structure as a network of non-covalent connections and we have investigated a variety of problems in structural biology, such as the identification of functional and folding clusters, determinants of quaternary association and characterization of the network properties of protein structures. We have also addressed a few important issues related to protein dynamics, such as the process of oligomerization in multimers, mechanism on protein folding, and ligand induced communications (allosteric effect). In this review we highlight some of the investigations which we have carried out in the recent past. A review on protein structure graphs was presented earlier, in which the focus was on the graphs and graph spectral properties and their implementation in the study of protein structure graphs/networks (PSN). In this article, we briefly summarize the relevant parts of the methodology and the focus is on the advancement brought out in the understanding of protein structure-function relationships through structure networks. The investigations of structural/biological problems are divided into two parts, in which the first part deals with the analysis of PSNs based on static structures obtained from x-ray crystallography. The second part highlights the changes in the network, associated with biological functions, which are deduced from the network analysis on the structures obtained from molecular dynamics simulations.
Resumo:
Dry-season weight loss in grazing cattle in northern Australia has been attenuated using a number of strategies (Hunter and Vercoe, 1987, Sillence et al. 1993, Gazzola and Hunter, 1999). Furthermore, the potential to improve efficiency of feed utilisation (and thus, dry-season performance) in ruminants through conventional modulation of the insulin-like growth factor (IGF) axis (Oddy and Owens, 1997, Hill et al., 1999) and through immunomodulation of the IGF axis (Hill et al., 1998a,b) has been demonstrated. The present study investigated the use of a vaccine directed against IGFBP-1 in Brahman steers which underwent a period of nutritional restriction followed by a return to wet-season grazing.
Resumo:
Effects of nutritional supplements on minimizing weight loss and abnormalities of protein turnover during pulmonary exacerbations in cystic fibrosis (CF) were studied by controlled trial. Patients received pulmonary therapy and either standard diet (n = 10) or adjunctive enteral supplements (n = 12). Initial protein turnover, measured by [15N]glycine kinetics, showed alterations of protein synthesis (P Syn) and catabolism (P Cat), which correlated with the degree of underweight, and negligible net protein deposition (P Dep). With treatment both groups had significant increases in mean body weight and forced expiratory volume in 1 s, expressed as percent predicted value for height (FEV1) by 3 wk, but a significant correlation between initial underweight and subsequent weight gain was observed only in supplemented patients. Mean P Syn and P Dep increased significantly (p < 0.001) only in the supplemented group. Pulmonary exacerbations in CF have important adverse effects on body-protein metabolism, similar to changes in protein-energy malnutrition and infection. These effects are reversed by short-term nutritional support. Strategic nutritional intervention should thus be considered in management, especially in malnourished patients.
Resumo:
Soil nitrogen (N) supply in the Vertosols of southern Queensland, Australia has steadily declined as a result of long-term cereal cropping without N fertiliser application or rotations with legumes. Nitrogen-fixing legumes such as lucerne may enhance soil N supply and therefore could be used in lucerne-wheat rotations. However, lucerne leys in this subtropical environment can create a soil moisture deficit, which may persist for a number of seasons. Therefore, we evaluated the effect of varying the duration of a lucerne ley (for up to 4 years) on soil N increase, N supply to wheat, soil water changes, wheat yields and wheat protein on a fertility-depleted Vertosol in a field experiment between 1989 and 1996 at Warra (26degrees 47'S, 150degrees53'E), southern Queensland. The experiment consisted of a wheat-wheat rotation, and 8 treatments of lucerne leys starting in 1989 (phase 1) or 1990 (phase 2) for 1,2,3 or 4 years duration, followed by wheat cropping. Lucerne DM yield and N yield increased with increasing duration of lucerne leys. Soil N increased over time following 2 years of lucerne but there was no further significant increase after 3 or 4 years of lucerne ley. Soil nitrate concentrations increased significantly with all lucerne leys and moved progressively downward in the soil profile from 1992 to 1995. Soil water, especially at 0.9-1.2 m depth, remained significantly lower for the next 3 years after the termination of the 4 year lucerne ley than under continuous wheat. No significant increase in wheat yields was observed from 1992 to 1995, irrespective of the lucerne ley. However, wheat grain protein concentrations were significantly higher under lucerne-wheat than under wheat wheat rotations for 3-5 years. The lucerne yield and soil water and nitrate-N concentrations were satisfactorily simulated with the APSIM model. Although significant N accretion occurred in the soil following lucerne leys, in drier seasons, recharge of the drier soil profile following long duration lucerne occurred after 3 years. Consequently, 3- and 4-year lucerne-wheat rotations resulted in more variable wheat yields than wheat-wheat rotations in this region. The remaining challenge in using lucerne-wheat rotations is balancing the N accretion benefits with plant-available water deficits, which are most likely to occur in the highly variable rainfall conditions of this region.
Resumo:
Some studies suggested that adequate vitamin D might reduce inflammation in adults. However, little is known about this association in early life. We aimed to determine the relationship between cord blood 25-hydroxyvitamin D (25(OH)D) and C-reactive protein (CRP) in neonates. Cord blood levels of 25(OH)D and CRP were measured in 1491 neonates in Hefei, China. Potential confounders including maternal sociodemographic characteristics, perinatal health status, lifestyle, and birth outcomes were prospectively collected. The average values of cord blood 25(OH)D and CRP were 39.43 nmol/L (SD = 20.35) and 6.71 mg/L (SD = 3.07), respectively. Stratified by 25(OH)D levels, per 10 nmol/L increase in 25(OH)D, CRP decreased by 1.42 mg/L (95% CI: 0.90, 1.95) among neonates with 25(OH)D <25.0 nmol/L, and decreased by 0.49 mg/L (95% CI: 0.17, 0.80) among neonates with 25(OH)D between 25.0 nmol/L and 49.9 nmol/L, after adjusting for potential confounders. However, no significant association between 25(OH)D and CRP was observed among neonates with 25(OH)D ≥50 nmol/L. Cord blood 25(OH)D and CRP levels showed a significant seasonal trend with lower 25(OH)D and higher CRP during winter-spring than summer-autumn. Stratified by season, a significant linear association of 25(OH)D with CRP was observed in neonates born in winter-spring (adjusted β = −0.11, 95% CI: −0.13, −0.10), but not summer-autumn. Among neonates born in winter-spring, neonates with 25(OH)D <25 nmol/L had higher risk of CRP ≥10 mg/L (adjusted OR = 3.06, 95% CI: 2.00, 4.69), compared to neonates with 25(OH)D ≥25 nmol/L. Neonates with vitamin D deficiency had higher risk of exposure to elevated inflammation at birth.
Resumo:
A strategy comprising a winter/spring protein supplement, rumen modifier and hormonal growth promotant (Compudose 400) was used in either the first year (Tl), second year (T2), or in both years (T1+2) following weaning in Brahman cross steers as a means of increasing liveweight gain up to 2.5 years of age. T2 produced the heaviest final liveweight (544.7 kg) and highest overall liveweight gain (366.7 kg), but these were not significantly different from T1 (538.6 kg; 360.9 kg), or T1+2 (528.7 kg; 349.3 kg). However, final liveweight and overall liveweight gains of T1 and T2 but not T1+2 were significantly greater than for untreated (C) steers (504.9 kg; 325.2 kg, both P < 0.05). Regardless of the strategy imposed, liveweight and liveweight gain were enhanced, however final liveweights in each treatment were below the preferred minimum target liveweight (570-580 kg) for premium export markets. Treatment in both years gave no benefit over treatment in 1 year only. 19th Biennial Conference. 5-9 July 1992. LaTrobe University, Melbourne.
Resumo:
Peanut (Arachis hypogaea L.) lines exhibiting high levels of resistance to peanut stripe virus (PStV) were obtained following microprojectile bombardment of embryogenic callus derived from mature seeds. Fertile plants of the commercial cultivars Gajah and NC7 were regenerated following co-bombardmentwith the hygromycin resistance gene and one of two forms of the PStV coat protein (CP) gene, an untranslatable, full length sequence (CP2) or a translatable gene encoding a CP with an N-terminal truncation (CP4). High level resistance to PStV was observed for both transgenes when plants were challenged with the homologous virus isolate. The mechanism of resistance appears to be RNA-mediated, since plants carrying either the untranslatable CP2 or CP4 had no detectable protein expression, but were resistant or immune (no virus replication). Furthermore, highly resistant, but not susceptible CP2 T0 plants contained transgene-specific small RNAs. These plants now provide important germplasm for peanut breeding, particularly in countries where PStV is endemic and poses a major constraint to peanut production.