937 resultados para Airway segmentation
Resumo:
Background Complete-pelvis segmentation in antero-posterior pelvic radiographs is required to create a patient-specific three-dimensional pelvis model for surgical planning and postoperative assessment in image-free navigation of total hip arthroplasty. Methods A fast and robust framework for accurately segmenting the complete pelvis is presented, consisting of two consecutive modules. In the first module, a three-stage method was developed to delineate the left hemipelvis based on statistical appearance and shape models. To handle complex pelvic structures, anatomy-specific information processing techniques were employed. As the input to the second module, the delineated left hemi-pelvis was then reflected about an estimated symmetry line of the radiograph to initialize the right hemi-pelvis segmentation. The right hemi-pelvis was segmented by the same three-stage method, Results Two experiments conducted on respectively 143 and 40 AP radiographs demonstrated a mean segmentation accuracy of 1.61±0.68 mm. A clinical study to investigate the postoperative assessment of acetabular cup orientations based on the proposed framework revealed an average accuracy of 1.2°±0.9° and 1.6°±1.4° for anteversion and inclination, respectively. Delineation of each radiograph costs less than one minute. Conclusions Despite further validation needed, the preliminary results implied the underlying clinical applicability of the proposed framework for image-free THA.
Resumo:
Patients suffering from cystic fibrosis (CF) show thick secretions, mucus plugging and bronchiectasis in bronchial and alveolar ducts. This results in substantial structural changes of the airway morphology and heterogeneous ventilation. Disease progression and treatment effects are monitored by so-called gas washout tests, where the change in concentration of an inert gas is measured over a single or multiple breaths. The result of the tests based on the profile of the measured concentration is a marker for the severity of the ventilation inhomogeneity strongly affected by the airway morphology. However, it is hard to localize underlying obstructions to specific parts of the airways, especially if occurring in the lung periphery. In order to support the analysis of lung function tests (e.g. multi-breath washout), we developed a numerical model of the entire airway tree, coupling a lumped parameter model for the lung ventilation with a 4th-order accurate finite difference model of a 1D advection-diffusion equation for the transport of an inert gas. The boundary conditions for the flow problem comprise the pressure and flow profile at the mouth, which is typically known from clinical washout tests. The natural asymmetry of the lung morphology is approximated by a generic, fractal, asymmetric branching scheme which we applied for the conducting airways. A conducting airway ends when its dimension falls below a predefined limit. A model acinus is then connected to each terminal airway. The morphology of an acinus unit comprises a network of expandable cells. A regional, linear constitutive law describes the pressure-volume relation between the pleural gap and the acinus. The cyclic expansion (breathing) of each acinus unit depends on the resistance of the feeding airway and on the flow resistance and stiffness of the cells themselves. Special care was taken in the development of a conservative numerical scheme for the gas transport across bifurcations, handling spatially and temporally varying advective and diffusive fluxes over a wide range of scales. Implicit time integration was applied to account for the numerical stiffness resulting from the discretized transport equation. Local or regional modification of the airway dimension, resistance or tissue stiffness are introduced to mimic pathological airway restrictions typical for CF. This leads to a more heterogeneous ventilation of the model lung. As a result the concentration in some distal parts of the lung model remains increased for a longer duration. The inert gas concentration at the mouth towards the end of the expirations is composed of gas from regions with very different washout efficiency. This results in a steeper slope of the corresponding part of the washout profile.
Resumo:
BACKGROUND Paediatric supraglottic airway devices AmbuAura-i and Air-Q were designed as conduits for tracheal intubation. Although fibreoptic-guided intubation has proved successful, blind intubation as a rescue technique has never been evaluated. OBJECTIVE Evaluation of blind intubation through AmbuAura-i and Air-Q. On the basis of fibreoptic view data, we hypothesised that the success rate with the AmbuAura-i would be higher than with the Air-Q. DESIGN A prospective, randomised controlled trial with institutional review board (IRB) approval and written informed consent. SETTING University Childrens' Hospital; September 2012 to July 2014. PATIENTS Eighty children, American Society of Anesthesiologists (ASA) class I to III, weight 5 to 50 kg. INTERVENTIONS Tracheal intubation was performed through the randomised device with the tip of a fibrescope placed inside and proximal to the tip of the tracheal tube. This permitted sight of tube advancement, but without fibreoptic guidance (visualised blind intubation). MAIN OUTCOME MEASURES Primary outcome was successfully visualised blind intubation; secondary outcomes included supraglottic airway device success, insertion times, airway leak pressure, fibreoptic view and adverse events. RESULTS Personal data did not differ between groups. In contrast to our hypothesis, blind intubation was possible in 15% with the Air-Q and in 3% with the AmbuAura-i [95% confidence interval (95% CI) 6 to 31 vs. 0 to 13%; P = 0.057]. First attempt supraglottic airway device insertion success rates were 95% (Air-Q) and 100% (AmbuAura-i; 95% CI 83 to 99 vs. 91 to 100; P = 0.49). Median leak pressures were 18 cmH2O (Air-Q) and 17 cmH2O [AmbuAura-i; interquartile range (IQR) 14 to 18 vs. 14 to 19 cmH2O; P = 0.66]. Air-Q insertion was slower (27 vs. 19 s, P < 0.001). There was no difference in fibreoptic view, or adverse events (P > 0.05). In one child (Air-Q size 1.5, tube size 3.5), the tube dislocated during device removal. CONCLUSION Ventilation with both devices is reliable, but success of blind intubation is unacceptably low and cannot be recommended for elective or rescue purposes. If intubation through a paediatric supraglottic airway device is desired, we suggest that fibreoptic guidance is used. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT01692522.
Resumo:
Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic Aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment System varying particle number concentration independent of particle chemistry, and an aerosol Deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully differentiated HBE is most appropriate in future toxicity studies.
Resumo:
Recurrent airway obstruction (RAO) is a multifactorial and polygenic disease. Affected horses are typically 7 years of age or older and show exercise intolerance, increased breathing effort, coughing, airway neutrophilia, mucus accumulation and hyperreactivity as well as cholinergic bronchospasm. The environmental factors responsible are predominantly allergens and irritants in haydust, but the immunological mechanisms underlying RAO are still unclear. Several studies have demonstrated a familiar predisposition for RAO and it is now proven that the disease has a genetic basis. In offspring, the risk of developing RAO is 3-fold increased when one parent is affected and increases to almost 5-fold when both parents have RAO. Segregation analysis in two high-prevalence families demonstrated a high heritability and a complex inheritance with several major genes. A whole genomescan showed chromosome-wide significant linkage of seven chromosomal regions with RAO. Of the microsatellites, which were located near atopy candidate genes, those in a region of chromosome 13 harboring the IL4R gene were strongly associated with the RAO phenotype in the offspring of one RAO-affected stallion. Furthermore, IgE-levels are influenced by hereditary factors in the horse, and we have evidence that RAO-affected offspring of the same stallion have increased levels of specific IgE against moldspore allergens. The identification of genetic markers and ultimately of the responsible genes will not only allow for an improved prophylaxis, i.e. early identification of susceptible individuals and avoidance of high-risk matings, but also improve our ability to find new therapeutic targets and to optimize existing treatments.
Resumo:
Mayer H. Segmentation and segregation patterns of women-owned high-tech firms in four metropolitan regions in the United States, Regional Studies. The number of women starting and owning a business has increased dramatically and female entrepreneurs are entering non-traditional sectors such as high technology, construction and manufacturing. This paper investigates the trends in high-tech entrepreneurship by women in four US metropolitan regions (Silicon Valley, California; Boston, Massachusetts; Washington, DC; and Portland, Oregon). The research examines the sectoral and spatial segmentation patterns of women-owned high-tech firms. Although women are entering non-traditional sectors, the research finds that women entrepreneurs tend to own businesses in female-typed high-tech sectors. In established high-tech regions like Silicon Valley and Boston, male-typed and female-typed women-owned high-tech firms differ significantly in terms of sectoral and spatial segmentation regardless of firm age. While differences between male-typed and female-typed firms are not significant at the regional level for Washington, DC, the analysis shows significant intra-metropolitan differences for the female-typed high-tech firms. The paper concludes that sectoral and spatial segmentation are powerful dynamics that shape business ownership by women in high technology.
Resumo:
PURPOSE Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. METHODS Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b(+)Prph2(Rd2) /J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. RESULTS Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. CONCLUSIONS Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. TRANSLATIONAL RELEVANCE The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions.
Resumo:
Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.
Resumo:
Automatic segmentation of the hip joint with pelvis and proximal femur surfaces from CT images is essential for orthopedic diagnosis and surgery. It remains challenging due to the narrowness of hip joint space, where the adjacent surfaces of acetabulum and femoral head are hardly distinguished from each other. This chapter presents a fully automatic method to segment pelvic and proximal femoral surfaces from hip CT images. A coarse-to-fine strategy was proposed to combine multi-atlas segmentation with graph-based surface detection. The multi-atlas segmentation step seeks to coarsely extract the entire hip joint region. It uses automatically detected anatomical landmarks to initialize and select the atlas and accelerate the segmentation. The graph based surface detection is to refine the coarsely segmented hip joint region. It aims at completely and efficiently separate the adjacent surfaces of the acetabulum and the femoral head while preserving the hip joint structure. The proposed strategy was evaluated on 30 hip CT images and provided an average accuracy of 0.55, 0.54, and 0.50 mm for segmenting the pelvis, the left and right proximal femurs, respectively.
Resumo:
This paper proposed an automated three-dimensional (3D) lumbar intervertebral disc (IVD) segmentation strategy from Magnetic Resonance Imaging (MRI) data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based template matching approach. Based on the estimated two-dimensional (2D) geometrical parameters, a 3D variable-radius soft tube model of the lumbar spine column is built by model fitting to the 3D data volume. Taking the geometrical information from the 3D lumbar spine column as constraints and segmentation initialization, the disc segmentation is achieved by a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.
Resumo:
This paper addresses the issue of fully automatic segmentation of a hip CT image with the goal to preserve the joint structure for clinical applications in hip disease diagnosis and treatment. For this purpose, we propose a Multi-Atlas Segmentation Constrained Graph (MASCG) method. The MASCG method uses multi-atlas based mesh fusion results to initialize a bone sheetness based multi-label graph cut for an accurate hip CT segmentation which has the inherent advantage of automatic separation of the pelvic region from the bilateral proximal femoral regions. We then introduce a graph cut constrained graph search algorithm to further improve the segmentation accuracy around the bilateral hip joint regions. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 15-fold cross validation. When the present approach was compared to manual segmentation, an average surface distance error of 0.30 mm, 0.29 mm, and 0.30 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. A further look at the bilateral hip joint regions demonstrated an average surface distance error of 0.16 mm, 0.21 mm and 0.20 mm for the acetabulum, the left femoral head, and the right femoral head, respectively.