811 resultados para Age-related macular degeneration
Resumo:
There is increasing evidence to suggest neuroinflammatory processes contribute to the cascade of events that lead to the progressive neuronal damage observed in neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease. The molecular mechanisms underlying such neurodegenerative processes are rather complex and involve modulation of the mitogen-activated protein kinase (MAPK) and NF-κB pathways leading to the generation of nitric oxide (NO). Such a small molecule may diffuse to the neighbouring neurons and trigger neuronal death through the inhibition of mitochondrial respiration and increases in the reactive oxygen and nitrogen species. Recently, attention has focused on the neuroprotective effects of flavonoids which have been effective in protecting against both age-related cognitive and motor decline in vivo. Although, the precise mechanisms by which flavonoids may exert their neuroprotective effects remain unclear, accumulating evidence suggest that they may exert their neuroprotective effects through the modulation of the MAP Kinase and PI3 Kinase signaling pathways. The aim of the present chapter is to highlight the potential neuroprotective role of dietary flavonoids in terms of their ability to modulate neuroinflammation in the central nervous system. We will provide an outline of the role glial cells play in neuroinflammation and describe the involvement of inflammatory mediators, produced by glia, in the cascade of events leading to neuronal degeneration. We will then present the evidence that flavonoids may modulate neuroinflammation by inhibiting the production of these inflammatory agents and summarise their potential mechanisms of action.
Resumo:
Understanding the metabolic processes associated with aging is key to developing effective management and treatment strategies for age-related diseases. We investigated the metabolic profiles associated with age in a Taiwanese and an American population. 1H NMR spectral profiles were generated for urine specimens collected from the Taiwanese Social Environment and Biomarkers of Aging Study (SEBAS; n = 857; age 54–91 years) and the Mid-Life in the USA study (MIDUS II; n = 1148; age 35–86 years). Multivariate and univariate linear projection methods revealed some common age-related characteristics in urinary metabolite profiles in the American and Taiwanese populations, as well as some distinctive features. In both cases, two metabolites—4-cresyl sulfate (4CS) and phenylacetylglutamine (PAG)—were positively associated with age. In addition, creatine and β-hydroxy-β-methylbutyrate (HMB) were negatively correlated with age in both populations (p < 4 × 10–6). These age-associated gradients in creatine and HMB reflect decreasing muscle mass with age. The systematic increase in PAG and 4CS was confirmed using ultraperformance liquid chromatography–mass spectrometry (UPLC–MS). Both are products of concerted microbial–mammalian host cometabolism and indicate an age-related association with the balance of host–microbiome metabolism.
Resumo:
Increased vascular stiffness, endothelial dysfunction, and isolated systolic hypertension are hallmarks of vascular aging. Regular cocoa flavanol (CF) intake can improve vascular function in healthy young and elderly at-risk individuals. However, the mechanisms underlying CF bioactivity remain largely unknown. We investigated the effects of CF intake on cardiovascular function in healthy young and elderly individuals without history, signs, or symptoms of cardiovascular disease by applying particular focus on functional endpoints relevant to cardiovascular aging. In a randomized, controlled, double-masked, parallel-group dietary intervention trial, 22 young (<35yrs) and 20 elderly (50-80yrs) healthy, male non- smokers consumed either a CF-containing drink (450mg CF) or nutrient-matched, CF-free control drink bi-daily for 14 days. The primary endpoint was endothelial function as measured by flow-mediated vasodilation (FMD). Secondary endpoints included cardiac output, vascular stiffness, conductance of conduit and resistance arteries, and perfusion in the microcirculation. Following 2 weeks of CF intake, FMD improved in young (6.1±0.7% vs. 7.6±0.7%, p<0.001) and elderly (4.9±0.6% vs. 6.3±0.9%, p<0.001). Secondary outcomes demonstrated in both groups that CF intake decreased pulse wave velocity and lowered total peripheral resistance, increased arteriolar- and microvascular vasodilator capacity, red cell deformability, and diastolic blood pressure, while cardiac output remained affected. In the elderly, baseline systolic blood pressure was elevated, driven by an arterial stiffness-related augmentation. CF intake decreased aortic augmentation index (-9%), and thus systolic blood pressure (-7mmHg). (Clinicaltrials.gov:NCT01639781) CF intake reverses age-related burden of cardiovascular risk in healthy elderly, highlighting the potential of dietary flavanols to maintain cardiovascular health.
Resumo:
The aging process causes an increase in percent body fat, but the mechanism remains unclear. In the present study we examined the impact of aging on brown adipose tissue (BAT) thermogenic activity as potential cause for the increase in adiposity. We show that aging is associated with interscapular BAT morphologic abnormalities and thermogenic dysfunction. In vitro experiments revealed that brown adipocyte differentiation is defective in aged mice. Interscapular brown tissue in aged mice is progressively populated by adipocytes bearing white morphologic characteristics. Aged mice fail to mobilize intracellular fuel reserves from brown adipocytes and exhibit deficiency in homeothermy. Our results suggest a role for orexin (OX) signaling in the regulation of thermogenesis during aging. Brown fat dysfunction and age-related assimilation of fat mass were accelerated in mice in which OX-producing neurons were ablated. Conversely, OX injections in old mice increased multilocular morphology, increased core body temperature, improved cold tolerance, and reduced adiposity. These results argue that BAT can be targeted for interventions to reverse age-associated increase in fat mass.
Resumo:
The presence of the, 4 allele of apolipoprotein E (APOE) is considered a risk factor for sporadic Alzheimer`s disease (AD). Our recent data demonstrated that the systemic modulation of oxidative stress in platelets and erythrocytes is disrupted in aging and AD. In this study, the relationship between APOE genotype and oxidative stress markers, both in AD patients and controls, was evaluated. The AD group showed an increase in the content of thiobarbituric acid-reactive substances (TBARS) and in the activities of nitric oxide synthase (NOS) and Na, K-ATPase, when compared to controls. Both groups had a similar cGMP content and superoxide dismutase activity. APOE epsilon 4 allele carriers showed higher NOS activity than non-carriers. These results suggest a possible influence of APOE genotype on nitric oxide (NO) production that might enhance the effects of age-related specific factor(s) associated with neurodegenerative disorders. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Background: There is general consensus that the effects of intrinsic aging on the oral mucosa are relatively small, though potentially important to understanding the pathologies present in the aged animals. Objective: In this paper, the development of dorsal surface of rat tongue was examined using transmission electron microscopy (TEM) and high-resolution scanning electron microscopy (HRSEM) in order to understand the age-related structural and ultrastructural changes experimentally. Methods: In this study, we used female rats 75 and 720 days old (adult and aging). Tissues of rat tongue were prepared and the specimens submitted to HRSEM and TEM techniques. Results: The analysis of HRSEM and TEM demonstrated that the same characteristic keratinous epithelium was found in aging animals, however with some modifications. Conclusion: We agree that there are obvious changes in the oral mucosa with aging and these modifications can be observed starting from the ultrastructural aspects. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
The purpose of this study was to investigate pacing-profile differences during the 90 km Vasaloppet ski race related to the categories of sex, age, and race experience. Skiing times from eight sections (S1 to S8) were analyzed. For each of the three categories, 400 pairs of skiers were matched to have a finish time within 60 seconds, the same start group, and an assignment to the same group for the other two categories. Paired-samples Student’s t-tests were used to investigate sectional pacing-profile differences between the subgroups. Results showed that males skied faster in S2 (P=0.0042), S3 (P=0.0049), S4 (P=0.010), and S1–S4 (P<0.001), whereas females skied faster in S6 (P<0.001), S7 (P<0.001), S8 (P=0.0088), and S5–S8 (P<0.001). For the age category, old subjects (40 to 59 years) skied faster than young subjects (19 to 39 years) in S3 (P=0.0029), and for the other sections, there were no differences. Experienced subjects (≥4 Vasaloppet ski race completions) skied faster in S1 (P<0.001) and S1–S4 (P=0.0054); inexperienced skiers (<4 Vasaloppet ski race completions) had a shorter mean skiing time in S5–S8 (P=0.0063). In conclusion, females had a more even pacing profile than that of males with the same finish time, start group, age, and race experience. No clear age-related pacing-profile difference was identified for the matched subgroups. Moreover, experienced skiers skied faster in the first half whereas inexperienced skiers had higher skiing speeds during the second half of the race.
Resumo:
Data comparing age-related alterations in faecal IgA concentrations of dogs are not available in the literature. The present study aimed to compare the faecal concentrations of IgA in puppies, mature and senior dogs. A total of twenty-four beagle dogs were used, including eight puppies (5 months old, four females and four males), eight mature (4.6 years old, eight males) and eight senior dogs (10.6 years old, three males and five females). Fresh faecal samples were collected from each dog for three consecutive days and pooled by animal. After saline extraction, IgA content was measured by ELISA. Data were analysed by one-way ANOVA, and means were compared with Tukey's test (P<0.05). Results showed that puppies have lower faecal IgA concentrations than mature dogs (P<0.05); senior animals presented intermediary results. The reduced faecal IgA concentration in puppies is consistent with the reduced serum and salivary IgA concentrations reported previously, suggesting a reduced mucosal immunity in this age group. Although some studies have found an increased serum IgA concentration in older dogs, this may differ from the intestinal secretion of IgA, which appears to be lower in some senior animals (four of the eight dogs studied).
Resumo:
Background: This study aimed to investigate the influence of age on sperm quality, as analysed by motile sperm organelle morphology examination (MSOME).Methods: Semen samples were collected from 975 men undergoing evaluation or treatment for infertility. Sperm cells were evaluated at 8400x magnification using an inverted microscope equipped with Nomarski (differential interference contrast) optics. Two forms of spermatozoa were considered: normal spermatozoa and spermatozoa with large nuclear vacuoles (LNV, defined as vacuoles occupying > 50% of the sperm nuclear area). At least 200 spermatozoa per sample were evaluated, and the percentages of normal and LNV spermatozoa were determined. The subjects were divided into three groups according to age: Group I, less than or equal to 35 years; Group II, 36-40 years; and Group III, greater than or equal to 41 years.Results: There was no difference in the percentages of normal sperm between the two younger (I and II) groups (P > 0.05). The percentage of normal sperm in the older group (III) was significantly lower than that in the younger (I and II) groups (P < 0.05). There was no difference in the percentage of LNV spermatozoa between the younger (I and II) groups (P > 0.05). The percentage of LNV spermatozoa was significantly higher in the older group (III) than in the younger (I and II) groups (P < 0.05). Regression analysis demonstrated a significant decrease in the incidence of normal sperm with increasing age (P < 0.05; r = -0.10). However, there was a significant positive correlation between the percentage of spermatozoa with LNV and male age (P < 0.05, r = 0.10).Conclusion: The results demonstrated a consistent decline in semen quality, as reflected by morphological evaluation by MSOME, with increased age. Considering the relationship between nuclear vacuoles and DNA damage, these age-related changes predict that increased paternal age should be associated with unsuccessful or abnormal pregnancy as a consequence of fertilisation with damaged spermatozoa. Given that sperm nuclear vacuoles can be evaluated more precisely at high magnification, these results support the routine use of MSOME for ICSI as a criterion for semen analysis.
Resumo:
Age-related changes in gastrointestinal-associated mucosal immune response have not been well studied. Thus, we investigated the effect of age on this response and compared these responses to those of peripheral immune cells. Saliva, blood, and intestinal biopsies were collected from young and old healthy subjects to determine immunoglobulin (Ig) levels and to isolate peripheral blood mononuclear cells, intraepithelial lymphocytes (IELs), and lamina propria lymphocytes (LPLs). Although subject age did not influence the level of total IgA found in saliva, IgA levels in serum increased (p < .05) with age. Older subjects' peripheral blood mononuclear cell proliferation and IL-2 production were significantly lower than those of young subjects. LPLs from older subjects produced significantly less IL-2 in response to all stimuli than did that from the young. IEL's ability to proliferate and produce IL-2 was not affected by subject age. Thus, LPL but not IEL demonstrated an age-related decline in immune function similar to that seen in peripheral lymphocytes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
MITOCHONDRIAL DYSFUNCTION IN HEREDITARY OPTIC NEUROPATHIES Mitochondrial pathologies are a heterogeneous group of clinical manifestations characterized by oxidative phosphorylation impairment. At the beginning of their recognition mitochondrial pathologies were regarded as rare disorders but indeed they are more frequent than originally thought. Due to the unique mitochondria peculiarities mitochondrial pathologies can be caused by mutations in both mitochondrial and nuclear genomes. The poor knowledge of pathologic mechanism of these disorders has not allowed a real development of the “mitochondrial medicine”, that is currently limited to symptoms mitigation. Leber hereditary optic neuropathy (LHON) was the first pathology to be linked to a point mutation in the mtDNA. The mechanism by which point mutations in mitochondrial gene encoding Complex I subunits leads to optic nerve degeneration is still unknown, although is well accepted that other genetic or environmental factors are involved in the modulation of pathology, where a pivotal role is certainly played by oxidative stress. We studied the relationship between the Ala16Val dimorphism in the mitochondrial targeting sequence of nuclear gene SOD2 and the 3460/ND1 LHON mutation. Our results show that, in control population, the heterozygous SOD2 genotype is associated to a higher activity and quantity of MnSOD, particularly with respect to Val homozygotes. Furthermore, we demonstrated that LHON patients harboring at least one Ala allele are characterized by an increased MnSOD activity with respect to relative control population. Since the ATP synthesis rate – severely reduced in LHON patients lymphocytes - is not affected by the SOD2 genotype, we concluded that SOD2 gene could modulate the pathogenicity of LHON mutations through a mechanism associated to an increase of reactive oxygen species production. Autosomal dominant optic atrophy (ADOA) is a pathology linked to mutations in nuclear gene encoding Opa1, a dynamin-related protein localized in the mitochondrial matrix. Although the clinical course is slightly different, the endpoint of ADOA is exactly the same of LHON: optic nerve degeneration with specific involvement of retinal ganglion cells. Opa1 is a relatively new protein, whose major role is the regulation of mitochondrial fusion. Mitochondrial morphology is the results of the equilibrium between two opposite force: fusion and fission, two processes that have to be finely regulated in order to preserve mitochondrial and cellular physiology. We studied fibroblasts deriving from ADOA patients characterized by a new deletion in the GTPase domain of the OPA1 gene. The biochemical characterization of ADOA and control fibroblasts has concerned the evaluation of ATP synthesis rate, mitochondrial membrane potential in different metabolic conditions and the morphological status of mitochondria. Regarding ATP synthesis rate we did not find significant differences between ADOA and control fibroblasts even though a trend toward increased reduction in ADOA samples is observed when fibroblasts are grown in absence of glucose or in the medium containing gramicidin. Furthermore, we found that also in ADOA fibroblasts membrane potential is actively maintained by proton pumping of fully functional respiratory chain complexes. Our results indicate that the mutation found in the pedigree analyzed acts primary impairing the mitochondrial fusion without affecting the energy production, supporting the notion that cell function is tightly linked to mitochondrial morphology. Mitochondrial dysfunctions are acquiring great attention because of their recognized relevance not only in aging but also in age-related pathologies including cancer, cardiovascular disease, type II diabetes, and neurodegenerative disorders. The involvement of mitochondria in such detrimental pathologies that, currently, have become so common enhances the necessity of standardization of therapeutic strategies capable of rescuing the normal mitochondrial function. In order to propose an alternative treatment for energy deficiency-disorders we tested the effect of substrates capable to stimulate the substrate-level phosphorylation on viability and energy availability in different experimental models grown under different metabolic conditions. In fibroblasts, the energy defect was achieved by culturing cells in presence of oligomycin, an inhibitor of ATP synthase complex. NARP cybrids have been used as model of mitochondrial pathology. Cell viability and ATP content have been considered as parameters to assay the capability of exogenous substrate to rescue energy failure. Our results suggest that patients suffering for some forms of ATP synthase deficiency, or characterized by a deficiency in energy production, might benefit from dietary or pharmacological treatment based on supplementation of α-ketoglutarate and aspartate.