900 resultados para Advanced virtual reality system
Resumo:
As digital technologies become widely used in designing buildings and infrastructure, questions arise about their impacts on construction safety. This review explores relationships between construction safety and digital design practices with the aim of fostering and directing further research. It surveys state-of-the-art research on databases, virtual reality, geographic information systems, 4D CAD, building information modeling and sensing technologies, finding various digital tools for addressing safety issues in the construction phase, but few tools to support design for construction safety. It also considers a literature on safety critical, digital and design practices that raises a general concern about ‘mindlessness’ in the use of technologies, and has implications for the emerging research agenda around construction safety and digital design. Bringing these strands of literature together suggests new kinds of interventions, such as the development of tools and processes for using digital models to promote mindfulness through multi-party collaboration on safety
Resumo:
View-based and Cartesian representations provide rival accounts of visual navigation in humans, and here we explore possible models for the view-based case. A visual “homing” experiment was undertaken by human participants in immersive virtual reality. The distributions of end-point errors on the ground plane differed significantly in shape and extent depending on visual landmark configuration and relative goal location. A model based on simple visual cues captures important characteristics of these distributions. Augmenting visual features to include 3D elements such as stereo and motion parallax result in a set of models that describe the data accurately, demonstrating the effectiveness of a view-based approach.
Resumo:
It is often assumed that humans generate a 3D reconstruction of the environment, either in egocentric or world-based coordinates, but the steps involved are unknown. Here, we propose two reconstruction-based models, evaluated using data from two tasks in immersive virtual reality. We model the observer’s prediction of landmark location based on standard photogrammetric methods and then combine location predictions to compute likelihood maps of navigation behaviour. In one model, each scene point is treated independently in the reconstruction; in the other, the pertinent variable is the spatial relationship between pairs of points. Participants viewed a simple environment from one location, were transported (virtually) to another part of the scene and were asked to navigate back. Error distributions varied substantially with changes in scene layout; we compared these directly with the likelihood maps to quantify the success of the models. We also measured error distributions when participants manipulated the location of a landmark to match the preceding interval, providing a direct test of the landmark-location stage of the navigation models. Models such as this, which start with scenes and end with a probabilistic prediction of behaviour, are likely to be increasingly useful for understanding 3D vision.
Resumo:
Mulsemedia—multiple sensorial media—captures a wide variety of research efforts and applications. This article presents a historic perspective on mulsemedia work and reviews current developments in the area. These take place across the traditional multimedia spectrum—from virtual reality applications to computer games—as well as efforts in the arts, gastronomy, and therapy, to mention a few. We also describe standardization efforts, via the MPEG-V standard, and identify future developments and exciting challenges the community needs to overcome.
Resumo:
Virtual Reality (VR) can provide visual stimuli for EEG studies that can be altered in real time and can produce effects that are difficult or impossible to reproduce in a non-virtual experimental platform. As part of this experiment the Oculus Rift, a commercial-grade, low-cost, Head Mounted Display (HMD) was assessed as a visual stimuli platform for experiments recording EEG. Following, the device was used to investigate the effect of congruent visual stimuli on Event Related Desynchronisation (ERD) due to motion imagery.
Resumo:
This paper describes a study of the use of immersive Virtual reality technologies in the design of a new hospital. It uses Schön’s concept of reflective practice and video-based methods to analyse the ways design teams approach and employ a full scale 3D immersive environment – a CAVE – in collaborative design work. The analysis describes four themes relating to reflective practice occurring in the setting: orienting to the CAVE technology itself, orienting to the representation of the specific design within the CAVE, activities accounting for, or exploring alternatives within the design for the use and users of the space, and more strategic interactions around how to best represent the design and model to the client within the CAVE setting. The analysis also reveals some unique aspects of design work in this environment. Perhaps most significantly, rather than enhancing or adding to an existing understanding of design through paper based or non-immersive digital representations, it is often acting to challenge or surprise the participants as they experience the immersive, full scale version of their own design.
Resumo:
A operação de reservatórios para geração de energia, ou controle de cheias é definida em função dos volumes afluentes que são resultantes das chuvas que ocorrem sobre a bacia. Devido à aleatoriedade e às próprias incertezas envolvidas na ocorrência das precipitações e vazões; a produção de energia, a segurança das barragens e o controle das cheias à montante e jusante ficam comprometidas. Para que as incertezas sejam reduzidas é necessário o aprimoramento das previsões de vazões de afluência em tempo real. A previsão em tempo real pode se realizada com base na vazão de postos de montante e jusante, na precipitação observada e, ou, na precipitação prevista. A previsão de precipitação é necessária para aumentar a antecipação da previsão e melhoria de resultados para tempos futuros além do tempo de concentração da bacia. Esta pesquisa tem como objetivo a avaliação do ganho da previsão de vazão com uso integrado de previsão de precipitação através de uso de um modelo meteorológico regional (meso-escala) com um modelo hidrológico distribuído. Os resultados do modelo meteorológico regional foram fornecidos pelo Laboratório de Planejamento Energético (LabPlan) da Universidade Federal de Santa Catarina (UFSC), onde está sendo utilizado, de forma operacio nal, o Modelo Numérico Regional ARPS (Advanced Regional Prediction System). O modelo hidrológico de transformação chuva-vazão utilizado é um modelo distribuído com discretização em módulos para grandes bacias - MGB (Modelo de Grandes Bacias). O estudo de caso foi realizado na bacia do rio Uruguai até a Usina Hidrelétrica de Machadinho, cuja área de drenagem é de, aproximadamente, 32.000 km2. Diversos cenários de previsão foram simulados. Para o período de 2001 e 2002 foi feita a análise das previsões de eventos isolados, segundo a disponibilidade de dados de previsão meteorológica. Para o período de 2003, durante 6 meses, foi feita a análise das previsões contínuas. Para este período, através de algumas estatísticas, avaliou-se o ganho hidrológico obtido, em termos de vazão prevista com utilização do modelo hidrológico chuva -vazão considerando chuva futura zero e considerando a previsão da chuva com modelo meteorológico regional. Para o período de 2001 a 2003 avaliou-se, também, a importância da rede de pluviógrafos para previsão em tempo real. Formas de atualização simples das variáveis de estado foram testadas e mostraram significativa melhora das previsões. Os resultados da previsão por eventos mostraram ganhos significativos na previsão de vazão quando a previsão de chuva foi incorporada. Já no período de previsão contínua o mesmo não foi observado, porém este período foi bastante seco com poucos eventos de cheia prejudicando a análise do uso das previsões de chuva no modelo hidrológico para previsão. A análise da importância da rede de pluviógrafos destacou a região sul da bacia como a região mais importante em termos de geração de escoamento rápido ao reservatório de Machadinho. Além disso, uma análise simplificada mostrou que uma rede de pluviógrafos distribuídos na bacia, segundo as recomendações da Organização Meteorológica Mundial (OMM), poderia reduzir em aproximadamente 25% o erro padrão nas previsões de vazão com 12 horas de antecedências em Machadinho.
Resumo:
Conceitua Realidade Aumentada do ponto de vista histórico de vários autores e como surgiu esse segmento através da evolução tecnológica até os dias atuais. Aborda seu funcionamento, como também, seus sistemas e aplicações em diversos campos de pesquisas e estudos científicos. Diferencia Realidade Aumentada de Realidade Virtual, visando melhor esclarecimento entre ambas na intenção de descaracterizá-las com uma única “realidade”. Apresenta a Realidade Aumentada e sua aplicação dentro de um contexto de uma unidade de informação, promovendo uma melhor interação com os usuários e as adaptações pelas quais as bibliotecas terão que passar futuramente para se adequarem a “explosão” tecnológica. Descreve o funcionamento da biblioteca ARToolKIT, baseada em RA e suas principais etapas de funcionamento para visualização de objetos virtuais em 3D. Exemplifica os benefícios que uma unidade de informação, que utiliza Realidade Aumentada, promove aos usuários portadores de deficiência, além de sua inclusão no meio digital e sua inserção no mercado de trabalho
Resumo:
The advent of the Internet stimulated the appearance of several services. An example is the communication ones present in the users day-by-day. Services as chat and e-mail reach an increasing number of users. This fact is turning the Net a powerful communication medium. The following work explores the use of communication conventional services into the Net infrastructure. We introduce the concept of communication social protocols applied to a shared virtual environment. We argue that communication tools have to be adapted to the Internet potentialities. To do that, we approach some theories of the Communication area and its applicability in a virtual environment context. We define multi-agent architecture to support the offer of these services, as well as, a software and hardware platform to support the accomplishment of experiments using Mixed Reality. Finally, we present the obtained results, experiments and products
Resumo:
In general, the designs of equipment takes into account the effects and processes of deterioration it will undergo and arrives at an approximate useful life. However, changes in operational processes and parameters, the action of external agents, the kind of maintenance conducted, the means of monitoring, and natural and accidental occurrences completely modify the desired performance of the equipment. The discontinuities that occur in anisotropic materials often and due to different factors evolve from being subcritical to critical acquiring the status of defect and compromising the physical integrity of the equipment. Increasingly sophisticated technological means of detection, monitoring and assessment of these discontinuities are required to respond ever more rapidly to the requirements of industry. This paper therefore presents a VPS (Virtual Pipe System) computational tool which uses the results of ultrasonic tests on equipment, plotting the discontinuities found in models created in the CAD and CAE systems, and then simulates the behavior of these defects in the structure to give an instantaneous view of the final behavior. This paper also presents an alternative method of conventional ultrasonic testing which correlates the integrity of an overlay (carbon steel and stainless steel attached by welding) and the reflection of ultrasonic waves coming from the interface between the two metals, thus making it possible to identify cracks in the casing and a shift of the overlay
Resumo:
Currently there is still a high demand for quality control in manufacturing processes of mechanical parts. This keeps alive the need for the inspection activity of final products ranging from dimensional analysis to chemical composition of products. Usually this task may be done through various nondestructive and destructive methods that ensure the integrity of the parts. The result generated by these modern inspection tools ends up not being able to geometrically define the real damage and, therefore, cannot be properly displayed on a computing environment screen. Virtual 3D visualization may help identify damage that would hardly be detected by any other methods. One may find some commercial softwares that seek to address the stages of a design and simulation of mechanical parts in order to predict possible damages trying to diminish potential undesirable events. However, the challenge of developing softwares capable of integrating the various design activities, product inspection, results of non-destructive testing as well as the simulation of damage still needs the attention of researchers. This was the motivation to conduct a methodological study for implementation of a versatile CAD/CAE computer kernel capable of helping programmers in developing softwares applied to the activities of design and simulation of mechanics parts under stress. In this research it is presented interesting results obtained from the use of the developed kernel showing that it was successfully applied to case studies of design including parts presenting specific geometries, namely: mechanical prostheses, heat exchangers and piping of oil and gas. Finally, the conclusions regarding the experience of merging CAD and CAE theories to develop the kernel, so as to result in a tool adaptable to various applications of the metalworking industry are presented
Resumo:
Panoramic rendering is the visualization of three-dimensional objects in a virtual environment through a wide viewing angle. This work investigated if the use of panoramas is able to promote faster searches in a virtual environment. Panoramas allow the presentation of space through less need to change the orientation of the camera, especially for the case of projections spanning 360º surrounding the user, which can benefit searching. However, the larger the angle, more distorted is the visualization of the environment, causing confusion in navigation. The distortion is even bigger when the user changes the pitch of the camera, by looking up or down. In this work we developed a technique to eliminate specifically the distortions caused by changes in pitch, which was called hemispheric projection. Experiments were done to evaluate the performance of search navigation through perspective, cylindrical and hemispherical projections. The results indicate that navigating with perspective projection is superior than navigating with panoramic projections, possibly due to factors such as (i) lack of experience of the participants in understanding the scenes displayed as panoramas, (ii) the inherent presence of distortion in panoramic projections and (iii) a lower display resolution because the objects are presented in smaller sizes in panoramic projections, making the perception of details more difficult. However, the hemispherical projection was better than the cylindrical, indicating that the developed technique provides benefits for navigation compared to current techniques of panoramic projection. The hemispheric projection also provided the least amount of changes of camera orientation, which is an indication that the hemispheric projections may be particularly useful in situations where there are restrictions on the ease to change the orientation. Future research will investigate the performance of cameras interactions on slower devices, such as using only keyboard, or brain-machine interfaces
Resumo:
The question that leads this article is What is this virtual space in the on-line mathematics education process? We focus on the question of the real and virtual as issues taken as components of cyberspace. We investigate these notions in the history of philosophy, looking to Granger to find their meaning, to enable us to understand them and fit them into the sphere of Mathematics Education. This theoretical-philosophical article, then, claims that the virtuality of cyberspace is supported by the computer screen, built by the unification of the sciences (mathematics), technology and its applications. Software and the actions taken by Internet users update the capability of these programs in a variety of characteristics and possibilities such as space-time flow interconnections as well as during the mathematics education process.
Resumo:
This paper aims to describe the basic concepts and necessary for Java programs can invoke libraries of programming language C/C ++, through the JNA API. We used a library developed in C/C ++ called Glass [8], which offers a solution for viewing 3D graphics, using graphics clusters, reducing the cost of viewing. The purpose of the work is to interact with the humanoid developed using Java, which makes movements of LIBRAS language for the deaf, as Glass's, so that through this they can view the information using stereoscopic multi-view in full size. ©2010 IEEE.
Resumo:
This paper explores the benefits of using immersive and interactive virtual reality environments to teach Dentistry. We present a tool for educators to manipulate and edit virtual models. One of the main contributions is that multimedia information can be semantically associated with parts of the model, through an ontology, enriching the experience; for example, videos can be linked to each tooth demonstrating how to extract them. The use of semantic information gives a greater flexibility to the models, since filters can be applied to create temporary models that show subsets of the original data in a human friendly way. We also explain how the software was written to run in arbitrary multi-projection environments. © 2011 Springer-Verlag.