904 resultados para 300704 Ecosystem Studies and Stock Assessment
Resumo:
An oligotrophic phosphorus (P) limited seagrass ecosystem in Florida Bay was experimentally fertilized in a unique way. Perches were installed to encourage seabirds to roost and deliver an external source of nutrients via defecation. Two treatments were examined: (1) a chronic 23-year fertilization and (2) an earlier 28-month fertilization that was discontinued when the chronic treatment was initiated. Because of the low mobility of P in carbonate sediments, we hypothesized long-term changes to ecosystem structure and function in both treatments. Structural changes in the chronic treatment included a shift in the dominant seagrass species from Thalassia testudinum to Halodule wrightii, large increases in epiphytic biomass and sediment chlorophyll-a, and a decline in species richness. Functional changes included increased benthic metabolism and quantum efficiency. Initial changes in the 28-month fertilization were similar, but after 23 years of nutrient depuration T. testudinum has reestablished itself as the dominant species. However, P remains elevated in the sediment and H. wrightii has maintained a presence. Functionally the discontinued treatment remains altered. Biomass exceeds that in the chronic treatment and indices of productivity, elevated relative to control, are not different from the chronic fertilization. Cessation of nutrient loading has resulted in a superficial return to the pre-disturbance character of the community, but due to the nature of P cycles functional changes persist.
Resumo:
Estuaries and estuarine wetlands are ecologically and societally important systems, exhibiting high rates of primary production that fuel offshore secondary production. Hydrological processes play a central role in shaping estuarine ecosystem structure and function by controlling nutrient loading and the relative contributions of marine and terrestrial influences on the estuary. The Comprehensive Everglades Restoration Plan includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The existing seasonal and inter-annual variability of water flow and source in Taylor River affords the opportunity to investigate relationships between ecosystem function and hydrologic forcing. Estimates of aquatic ecosystem metabolism, derived from free-water, diel changes in dissolved oxygen, were combined with assessments of wetland flocculent detritus quality and transport within the context of seasonal changes in Everglades hydrology. Variation in ecosystem gross primary production and respiration were linked to seasonal changes in estuarine water quality using multiple autoregression models. Furthermore, Taylor River was observed to be net heterotrophic, indicating that an allochthonous source of carbon maintained ecosystem respiration in excess of autochthonous primary production. Wetland-derived detritus appears to be an important vector of energy and nutrients across the Everglades landscape; and in Taylor River, is seasonally flushed into ponded segments of the river where it is then respired. Lastly, seasonal water delivery appears to govern feedbacks regulating water column phosphorus availability in the Taylor River estuary.
Resumo:
Bok (2010) argues civic understanding could improve student happiness by improving perceptions of politics and government, but the state of civic education in public schools keeps this from happening. This study argues that this notion of civic education is conservative by exploring Bok’s premises, social studies, and civic education.
Resumo:
The study is funded by Chiesi Farmaceutici S.p.A., Parma, Italy
Resumo:
Background: Since 2007, there has been an ongoing collaboration between Duke University and Mulago National Referral Hospital (NRH) in Kampala, Uganda to increase surgical capacity. This program is prepared to expand to other sites within Uganda to improve neurosurgery outside of Kampala as well. This study assessed the existing progress at Mulago NRH and the neurosurgical needs and assets at two potential sites for expansion. Methods: Three public hospitals were visited to assess needs and assets: Mulago NRH, Mbarara Regional Referral Hospital (RRH), and Gulu RRH. At each site, a surgical capacity tool was administered and healthcare workers were interviewed about perceived needs and assets. A total of 39 interviews were conducted between the three sites. Thematic analysis of the interviews was conducted to identify the reported needs and assets at each hospital. Results: Some improvements are needed to the Duke-Mulago Collaboration model prior to expansion; minor changes to the neurosurgery residency program as well as the method for supply donation and training provided during neurosurgery camps need to examined. Neurosurgery can be implemented at Mbarara RRH currently but the hospital needs a biomedical equipment technician on staff immediately. Gulu RRH is not well positioned for Neurosurgery until there is a CT Scanner somewhere in the Northern Region of Uganda or at the hospital. Conclusions: Neurosurgery is already present in Uganda on a small scale and needs rapid expansion to meet patient needs. This progression is possible with prudent allocation of resources on strategic equipment purchases, human resources including clinical staff and biomedical staff, and changes to the supply chain management system.
Resumo:
Net ecosystem calcification rates (NEC) and net photosynthesis (NP) were determined from CO2 seawater parameters on the barrier coral reef of Kaneohe Bay, Oahu, Hawaii. Autosamplers were deployed to collect samples on the barrier reef every 2 hours for six 48-hour deployments, two each in June 2008, August 2009, and January/February 2010. NEC on the Kaneohe Bay barrier reef increased throughout the day and decreased at night. Net calcification continued at low rates at night except for six time periods when net dissolution was measured. The barrier reef was generally net photosynthetic (positive NP) during the day and net respiring (negative NP) at night. NP controlled the diel cycles of the partial pressure of CO2 (pCO2) and aragonite saturation state resulting in high daytime aragonite saturation state levels when calcification rates were at their peak. However, the NEC and NP diel cycles can become decoupled for short periods of time (several hours) without affecting calcification rates. On a net daily basis, net ecosystem production (NEP) of the barrier reef was found to be sometimes net photosynthetic and sometimes net respiring and ranged from -378 to 80 mmol m-2 d-1 when calculated using simple box models. Daily NEC of the barrier reef was positive (net calcification) for all deployments and ranged from 174 to 331 mmol CaCO3 m-2 d-1. Daily NEC was strongly negatively correlated with average daily pCO2 (R2 = 0.76) which ranged from 431 to 622 µatm. Daily NEC of the Kaneohe Bay barrier reef is similar to or higher than daily NEC measured on other coral reefs even though aragonite saturation state levels (mean aragonite saturation state = 2.85) are some of the lowest measured in coral reef ecosystems. It appears that while calcification rate and ?arag are correlated within a single coral reef ecosystem, this relationship does not necessarily hold between different coral reef systems. It can be expected that ocean acidification will not affect coral reefs uniformly and that some may be more sensitive to increasing pCO2 levels than others.
Resumo:
The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed “community targets”) that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge compared to transit observations because of their significantly longer durations. Using only a single mode, we propose to observe a full-orbit phase curve of one of the previously characterized, short-orbital-period planets to evaluate the facility-level aspects of long, uninterrupted time-series observations.
Resumo:
Engineered cocrystals offer an alternative solid drug form with tailored physicochemical properties. Interestingly, although cocrystals provide many new possibilities, they also present new challenges, particularly in regard to their design and large-scale manufacture. Current literature has primarily focused on the preparation and characterization of novel cocrystals typically containing only the drug and coformer, leaving the subsequent formulation less explored. In this paper we propose, for the first time, the use of hot melt extrusion for the mechanochemical synthesis of pharmaceutical cocrystals in the presence of a meltable binder. In this approach, we examine excipients that are amenable to hot melt extrusion, forming a suspension of cocrystal particulates embedded in a pharmaceutical matrix. Using ibuprofen and isonicotinamide as a model cocrystal reagent pair, formulations extruded with a small molecular matrix carrier (xylitol) were examined to be intimate mixtures wherein the newly formed cocrystal particulates were physically suspended in a matrix. With respect to formulations extruded using polymeric carriers (Soluplus and Eudragit EPO, respectively), however, there was no evidence within PXRD patterns of either crystalline ibuprofen or the cocrystal. Importantly, it was established in this study that an appropriate carrier for a cocrystal reagent pair during HME processing should satisfy certain criteria including limited interaction with parent reagents and cocrystal product, processing temperature sufficiently lower than the onset of cocrystal Tm, low melt viscosity, and rapid solidification upon cooling.
Resumo:
This paper aims to crystallize recent research performed at the University of Worcester to investigate the feasibility of using the commercial game engine ‘Unreal Tournament 2004’ (UT2004) to produce ‘Educational Immersive Environments’ (EIEs) suitable for education and training. Our research has been supported by the UK Higher Education Academy. We discuss both practical and theoretical aspects of EIEs. The practical aspects include the production of EIEs to support high school physics education, the education of architects, and the learning of literacy by primary school children. This research is based on the development of our novel instructional medium, ‘UnrealPowerPoint’. Our fundamental guiding principles are that, first, pedagogy must inform technology, and second, that both teachers and pupils should be empowered to produce educational materials. Our work is informed by current educational theories such as constructivism, experiential learning and socio-cultural approaches as well as elements of instructional design and game principles.
Resumo:
One of the biggest challenges that contaminant hydrogeology is facing, is how to adequately address the uncertainty associated with model predictions. Uncertainty arise from multiple sources, such as: interpretative error, calibration accuracy, parameter sensitivity and variability. This critical issue needs to be properly addressed in order to support environmental decision-making processes. In this study, we perform Global Sensitivity Analysis (GSA) on a contaminant transport model for the assessment of hydrocarbon concentration in groundwater. We provide a quantification of the environmental impact and, given the incomplete knowledge of hydrogeological parameters, we evaluate which are the most influential, requiring greater accuracy in the calibration process. Parameters are treated as random variables and a variance-based GSA is performed in a optimized numerical Monte Carlo framework. The Sobol indices are adopted as sensitivity measures and they are computed by employing meta-models to characterize the migration process, while reducing the computational cost of the analysis. The proposed methodology allows us to: extend the number of Monte Carlo iterations, identify the influence of uncertain parameters and lead to considerable saving computational time obtaining an acceptable accuracy.
Resumo:
Structuring integrated social-ecological systems (SES) research remains a core challenge for achieving sustainability. Numerous concepts and frameworks exist, but there is a lack of mutual learning and orientation of knowledge between them. We focus on two approaches in particular: the ecosystem services concept and Elinor Ostrom’s diagnostic SES framework. We analyze the strengths and weaknesses of each and discuss their potential for mutual learning. We use knowledge types in sustainability research as a boundary object to compare the contributions of each approach. Sustainability research is conceptualized as a multi-step knowledge generation process that includes system, target, and transformative knowledge. A case study of the Southern California spiny lobster fishery is used to comparatively demonstrate how each approach contributes a different lens and knowledge when applied to the same case. We draw on this case example in our discussion to highlight potential interlinkages and areas for mutual learning. We intend for this analysis to facilitate a broader discussion that can further integrate SES research across its diverse communities.