930 resultados para 3-d visualization
Resumo:
固相法合成具有橄榄石型结构的LiFePO_4晶体,合成温度分别为670、700、730℃.采用XRD结构精修对合成LiFePO_4的结构进行了研究.研究发现随着合成温度的变化,晶胞参数a、b和c发生变化,晶胞参数的变化是等比例的增加或减少.由于合成温度的变化,Fe-O八面体中Fe-O键长发生变化,Fe-O键长的变化将会使得Fe的3 d轨道能量发生变化.相对于合成温度670、730℃,在700℃合成的LiFePO_4晶体具有最大的锂离子扩散有效面积.
Resumo:
Seismic structure above and below the core-mantle boundary (CMB) has been studied through use of travel time and waveform analyses of several different seismic wave groups. Anomalous systematic trends in observables document mantle heterogeneity on both large and small scales. Analog and digital data has been utilized, and in many cases the analog data has been optically scanned and digitized prior to analysis.
Differential travel times of S - SKS are shown to be an excellent diagnostic of anomalous lower mantle shear velocity (V s) structure. Wavepath geometries beneath the central Pacific exhibit large S- SKS travel time residuals (up to 10 sec), and are consistent with a large scale 0(1000 km) slower than average V_s region (≥3%). S - SKS times for paths traversing this region exhibit smaller scale patterns and trends 0(100 km) indicating V_s perturbations on many scale lengths. These times are compared to predictions of three tomographically derived aspherical models: MDLSH of Tanimoto [1990], model SH12_WM13 of Suet al. [1992], and model SH.10c.17 of Masters et al. [1992]. Qualitative agreement between the tomographic model predictions and observations is encouraging, varying from fair to good. However, inconsistencies are present and suggest anomalies in the lower mantle of scale length smaller than the present 2000+ km scale resolution of tomographic models. 2-D wave propagation experiments show the importance of inhomogeneous raypaths when considering lateral heterogeneities in the lowermost mantle.
A dataset of waveforms and differential travel times of S, ScS, and the arrival from the D" layer, Scd, provides evidence for a laterally varying V_s velocity discontinuity at the base of the mantle. Two different localized D" regions beneath the central Pacific have been investigated. Predictions from a model having a V_s discontinuity 180 km above the CMB agree well with observations for an eastern mid-Pacific CMB region. This thickness differs from V_s discontinuity thicknesses found in other regions, such as a localized region beneath the western Pacific, which average near 280 km. The "sharpness" of the V_s jump at the top of D", i.e., the depth range over which the V_s increase occurs, is not resolved by our data, and our data can in fact may be modeled equally well by a lower mantle with the increase in V_s at the top of D" occurring over a 100 krn depth range. It is difficult at present to correlate D" thicknesses from this study to overall lower mantle heterogeneity, due to uncertainties in the 3-D models, as well as poor coverage in maps of D" discontinuity thicknesses.
P-wave velocity structure (V_p) at the base of the mantle is explored using the seismic phases SKS and SPdKS. SPdKS is formed when SKS waves at distances around 107° are incident upon the CMB with a slowness that allows for coupling with diffracted P-waves at the base of the mantle. The P-wave diffraction occurs at both the SKS entrance and exit locations of the outer core. SP_dKS arrives slightly later in time than SKS, having a wave path through the mantle and core very close to SKS. The difference time between SKS and SP_dKS strongly depends on V_p at the base of the mantle near SK Score entrance and exit points. Observations from deep focus Fiji-Tonga events recorded by North American stations, and South American events recorded by European and Eurasian stations exhibit anomalously large SP_dKS - SKS difference times. SKS and the later arriving SP_dKS phase are separated by several seconds more than predictions made by 1-D reference models, such as the global average PREM [Dziewonski and Anderson, 1981] model. Models having a pronounced low-velocity zone (5%) in V_p in the bottom 50-100 km of the mantle predict the size of the observed SP_dK S-SKS anomalies. Raypath perturbations from lower mantle V_s structure may also be contributing to the observed anomalies.
Outer core structure is investigated using the family of SmKS (m=2,3,4) seismic waves. SmKS are waves that travel as S-waves in the mantle, P-waves in the core, and reflect (m-1) times on the underside of the CMB, and are well-suited for constraining outermost core V_p structure. This is due to closeness of the mantle paths and also the shallow depth range these waves travel in the outermost core. S3KS - S2KS and S4KS - S3KS differential travel times were measured using the cross-correlation method and compared to those from reflectivity synthetics created from core models of past studies. High quality recordings from a deep focus Java Sea event which sample the outer core beneath the northern Pacific, the Arctic, and northwestern North America (spanning 1/8th of the core's surface area), have SmKS wavepaths that traverse regions where lower mantle heterogeneity is pre- dieted small, and are well-modeled by the PREM core model, with possibly a small V_p decrease (1.5%) in the outermost 50 km of the core. Such a reduction implies chemical stratification in this 50 km zone, though this model feature is not uniquely resolved. Data having wave paths through areas of known D" heterogeneity (±2% and greater), such as the source-side of SmKS lower mantle paths from Fiji-Tonga to Eurasia and Africa, exhibit systematic SmKS differential time anomalies of up to several seconds. 2-D wave propagation experiments demonstrate how large scale lower mantle velocity perturbations can explain long wavelength behavior of such anomalous SmKS times. When improperly accounted for, lower mantle heterogeneity maps directly into core structure. Raypaths departing from homogeneity play an important role in producing SmKS anomalies. The existence of outermost core heterogeneity is difficult to resolve at present due to uncertainties in global lower mantle structure. Resolving a one-dimensional chemically stratified outermost core also remains difficult due to the same uncertainties. Restricting study to higher multiples of SmKS (m=2,3,4) can help reduce the affect of mantle heterogeneity due to the closeness of the mantle legs of the wavepaths. SmKS waves are ideal in providing additional information on the details of lower mantle heterogeneity.
Resumo:
This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.
We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.
We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.
We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.
Resumo:
This thesis presents theories, analyses, and algorithms for detecting and estimating parameters of geospatial events with today's large, noisy sensor networks. A geospatial event is initiated by a significant change in the state of points in a region in a 3-D space over an interval of time. After the event is initiated it may change the state of points over larger regions and longer periods of time. Networked sensing is a typical approach for geospatial event detection. In contrast to traditional sensor networks comprised of a small number of high quality (and expensive) sensors, trends in personal computing devices and consumer electronics have made it possible to build large, dense networks at a low cost. The changes in sensor capability, network composition, and system constraints call for new models and algorithms suited to the opportunities and challenges of the new generation of sensor networks. This thesis offers a single unifying model and a Bayesian framework for analyzing different types of geospatial events in such noisy sensor networks. It presents algorithms and theories for estimating the speed and accuracy of detecting geospatial events as a function of parameters from both the underlying geospatial system and the sensor network. Furthermore, the thesis addresses network scalability issues by presenting rigorous scalable algorithms for data aggregation for detection. These studies provide insights to the design of networked sensing systems for detecting geospatial events. In addition to providing an overarching framework, this thesis presents theories and experimental results for two very different geospatial problems: detecting earthquakes and hazardous radiation. The general framework is applied to these specific problems, and predictions based on the theories are validated against measurements of systems in the laboratory and in the field.
Resumo:
Inspired by key experimental and analytical results regarding Shape Memory Alloys (SMAs), we propose a modelling framework to explore the interplay between martensitic phase transformations and plastic slip in polycrystalline materials, with an eye towards computational efficiency. The resulting framework uses a convexified potential for the internal energy density to capture the stored energy associated with transformation at the meso-scale, and introduces kinetic potentials to govern the evolution of transformation and plastic slip. The framework is novel in the way it treats plasticity on par with transformation.
We implement the framework in the setting of anti-plane shear, using a staggered implicit/explict update: we first use a Fast-Fourier Transform (FFT) solver based on an Augmented Lagrangian formulation to implicitly solve for the full-field displacements of a simulated polycrystal, then explicitly update the volume fraction of martensite and plastic slip using their respective stick-slip type kinetic laws. We observe that, even in this simple setting with an idealized material comprising four martensitic variants and four slip systems, the model recovers a rich variety of SMA type behaviors. We use this model to gain insight into the isothermal behavior of stress-stabilized martensite, looking at the effects of the relative plastic yield strength, the memory of deformation history under non-proportional loading, and several others.
We extend the framework to the generalized 3-D setting, for which the convexified potential is a lower bound on the actual internal energy, and show that the fully implicit discrete time formulation of the framework is governed by a variational principle for mechanical equilibrium. We further propose an extension of the method to finite deformations via an exponential mapping. We implement the generalized framework using an existing Optimal Transport Mesh-free (OTM) solver. We then model the $\alpha$--$\gamma$ and $\alpha$--$\varepsilon$ transformations in pure iron, with an initial attempt in the latter to account for twinning in the parent phase. We demonstrate the scalability of the framework to large scale computing by simulating Taylor impact experiments, observing nearly linear (ideal) speed-up through 256 MPI tasks. Finally, we present preliminary results of a simulated Split-Hopkinson Pressure Bar (SHPB) experiment using the $\alpha$--$\varepsilon$ model.
Resumo:
This thesis examines collapse risk of tall steel braced frame buildings using rupture-to-rafters simulations due to suite of San Andreas earthquakes. Two key advancements in this work are the development of (i) a rational methodology for assigning scenario earthquake probabilities and (ii) an artificial correction-free approach to broadband ground motion simulation. The work can be divided into the following sections: earthquake source modeling, earthquake probability calculations, ground motion simulations, building response, and performance analysis.
As a first step the kinematic source inversions of past earthquakes in the magnitude range of 6-8 are used to simulate 60 scenario earthquakes on the San Andreas fault. For each scenario earthquake a 30-year occurrence probability is calculated and we present a rational method to redistribute the forecast earthquake probabilities from UCERF to the simulated scenario earthquake. We illustrate the inner workings of the method through an example involving earthquakes on the San Andreas fault in southern California.
Next, three-component broadband ground motion histories are computed at 636 sites in the greater Los Angeles metropolitan area by superposing short-period (0.2~s-2.0~s) empirical Green's function synthetics on top of long-period ($>$ 2.0~s) spectral element synthetics. We superimpose these seismograms on low-frequency seismograms, computed from kinematic source models using the spectral element method, to produce broadband seismograms.
Using the ground motions at 636 sites for the 60 scenario earthquakes, 3-D nonlinear analysis of several variants of an 18-story steel braced frame building, designed for three soil types using the 1994 and 1997 Uniform Building Code provisions and subjected to these ground motions, are conducted. Model performance is classified into one of five performance levels: Immediate Occupancy, Life Safety, Collapse Prevention, Red-Tagged, and Model Collapse. The results are combined with the 30-year probability of occurrence of the San Andreas scenario earthquakes using the PEER performance based earthquake engineering framework to determine the probability of exceedance of these limit states over the next 30 years.
Resumo:
There is a sparse number of credible source models available from large-magnitude past earthquakes. A stochastic source model generation algorithm thus becomes necessary for robust risk quantification using scenario earthquakes. We present an algorithm that combines the physics of fault ruptures as imaged in laboratory earthquakes with stress estimates on the fault constrained by field observations to generate stochastic source models for large-magnitude (Mw 6.0-8.0) strike-slip earthquakes. The algorithm is validated through a statistical comparison of synthetic ground motion histories from a stochastically generated source model for a magnitude 7.90 earthquake and a kinematic finite-source inversion of an equivalent magnitude past earthquake on a geometrically similar fault. The synthetic dataset comprises of three-component ground motion waveforms, computed at 636 sites in southern California, for ten hypothetical rupture scenarios (five hypocenters, each with two rupture directions) on the southern San Andreas fault. A similar validation exercise is conducted for a magnitude 6.0 earthquake, the lower magnitude limit for the algorithm. Additionally, ground motions from the Mw7.9 earthquake simulations are compared against predictions by the Campbell-Bozorgnia NGA relation as well as the ShakeOut scenario earthquake. The algorithm is then applied to generate fifty source models for a hypothetical magnitude 7.9 earthquake originating at Parkfield, with rupture propagating from north to south (towards Wrightwood), similar to the 1857 Fort Tejon earthquake. Using the spectral element method, three-component ground motion waveforms are computed in the Los Angeles basin for each scenario earthquake and the sensitivity of ground shaking intensity to seismic source parameters (such as the percentage of asperity area relative to the fault area, rupture speed, and risetime) is studied.
Under plausible San Andreas fault earthquakes in the next 30 years, modeled using the stochastic source algorithm, the performance of two 18-story steel moment frame buildings (UBC 1982 and 1997 designs) in southern California is quantified. The approach integrates rupture-to-rafters simulations into the PEER performance based earthquake engineering (PBEE) framework. Using stochastic sources and computational seismic wave propagation, three-component ground motion histories at 636 sites in southern California are generated for sixty scenario earthquakes on the San Andreas fault. The ruptures, with moment magnitudes in the range of 6.0-8.0, are assumed to occur at five locations on the southern section of the fault. Two unilateral rupture propagation directions are considered. The 30-year probabilities of all plausible ruptures in this magnitude range and in that section of the fault, as forecast by the United States Geological Survey, are distributed among these 60 earthquakes based on proximity and moment release. The response of the two 18-story buildings hypothetically located at each of the 636 sites under 3-component shaking from all 60 events is computed using 3-D nonlinear time-history analysis. Using these results, the probability of the structural response exceeding Immediate Occupancy (IO), Life-Safety (LS), and Collapse Prevention (CP) performance levels under San Andreas fault earthquakes over the next thirty years is evaluated.
Furthermore, the conditional and marginal probability distributions of peak ground velocity (PGV) and displacement (PGD) in Los Angeles and surrounding basins due to earthquakes occurring primarily on the mid-section of southern San Andreas fault are determined using Bayesian model class identification. Simulated ground motions at sites within 55-75km from the source from a suite of 60 earthquakes (Mw 6.0 − 8.0) primarily rupturing mid-section of San Andreas fault are considered for PGV and PGD data.
Resumo:
通过MDT三维工具集方便地实现了直齿轮的造型,重点说明了用基于特征造型的方法在MDT环境下实现斜齿轮造型的详细过程,并用MDT的有限元分析功能对齿轮的受力善进行了分析。整个过程在MDT的集成环境下完成,对齿轮的工程设计具有较高的实用价值。
Resumo:
We report an alternative medium of transparent upconverting colloid containing lanthanide ion doped NaYF4 nanocrystals for three-dimensional (3D) volumetric display. The colloids exhibit tunable upconversion luminescence with a wide spectrum of colors by adjusting the doping concentrations of the nanocrystals and the compositions of the colloids. Our preliminary experimental result indicates that an upconverting colloid-based 3D volumetric display using a convergent, near infrared laser beam to induce a localized luminescent spot near the focus is technically feasible. Therefore arbitrary 3D objects can be created inside the upconverting colloid by use of computer controlled 3D scanning systems. (C) 2008 Optical Society of America
Resumo:
Este artículo forma parte de la investigación realizada en el marco de la tesis de licenciatura de su autora: "La red viaria romana en el norte de Burgos. Valles de Mena, Losa y Sotoscueva. Vía Pisoraca- Flauiobriga. Via Flauiobriga-Iuliobriga. Vías secundarias", leída en el Departamento de Estudios Clásicos de la Facultad de Filología, Geografía e Historia de la UPV/EHU el 9 de octubre de 1996.
Resumo:
An account is given of the current situation regarding the lake fisheries and fish culture practices in China. The modern lake fisheries take advantage of the 3-D spaces of lakes to fully develop the resources. Currently, the fisheries concentrate on the following 3 aspects: bringing the water body into full play; various types of aquaculture enclosures; and selective measures in resources protection, stocking and aquaculture.
Resumo:
翠雀属Delphinium L.是毛茛科中的一个大属,全世界有300-400 余种,广布于北半球温带地区。我国是世界上记载翠雀属植物种类最多的国家,尤以西南横断山区种类最为丰富。 通过文献查阅、标本室研究和野外考察,本文对我国特别是横断山区翠雀属植物的主要形态性状在居群间和居群内的变异式样进行了初步分析,认为根的形态、叶的分裂程度、植株尤其是花序轴和花梗被毛与否以及毛被类型、小苞片的形状和位置、退化雄蕊的颜色、上萼片的形状、心皮数目和种子形态特征是比较可靠的分类性状。但性状之间的相关性往往较小,即使是通常比较稳定的分类性状有时也表现出不同程度的变异,因此同一性状对于不同等级分类群的划分和在不同分类群中的分类价值常不一样。在具体的分类处理中,应具体情况具体分析,尽可能利用较多的分类学性状或性状组合。 根据上述对我国翠雀属植物主要形态性状变异式样的理解,本文主要对我国西南横断山区及其邻近一些地区的翠雀属植物进行了力所能及的分类修订:将42 种和22 变种降为异名,提出2 新组合(毛梗黑水翠雀D. potaninii var. mollipes (W. T. Wang) Q. Yuan & Q. E. Yang 和腺毛康定翠雀D. tatsienense var. pseudomosoynense (W. T. Wang) Q. E. Yang & Q. Yuan),澄清了直距翠雀D. tenii Lévl. 的名实问题和Munz 等学者对我国翠雀属植物标本的鉴定错误以及由此引起的我国有关翠雀属植物的地理分布的混乱; 另有两种( 硕片翠雀D. grandilimbum W. T. Wang & M. J. Warnock 和永宁翠雀D. yongningense W. T. Wang & M. J. Warnock)因未见到模式标本,故暂存疑。本文讨论到的我国翠雀属植物共有87 种、10 变种。 为了在染色体水平上了解横断山区翠雀属植物的物种形成和分化,同时增加对整个翠雀族tribe Delphineae Warming 植物染色体进化的理解,本文报道了我国主要采自该地区的乌头属Aconitum L. 30 种、1 变种共40 个居群和翠雀属 48 种、3 变种共87 个居群的染色体数目,分析了30 种、1 变种乌头属植物和 46 种、3 变种翠雀属植物的核型,发现46 种、3 变种翠雀属植物为二倍体(2n = 2x=16),1 种(黄毛翠雀D. chrysotrichum Finet & Gagnep.)为四倍体(2n = 4x =32),1种(螺距翠雀D. spirocentrum Hand.-Mazz.)有二倍体和四倍体两种细胞型,3 种(宽距翠雀D. beesianum W. W. Smith、裂瓣翠雀D. mosoynense Franch.和康定翠雀 D. tatsienense Franch.)的个别居群有B 染色体出现。这表明横断山区翠雀属植物的物种形成主要在二倍体水平上进行。可能由于核型直向选择(karyotypic orthoselection)的结果,我国翠雀属植物的核型就整体情况而言在属内相当一致,属内核型分化不如乌头属中明显,外部形态上显得最为原始的种类如短距翠雀 D. forrestii Diels 和毛翠雀D. trichophorum Franch.的核型与其他多年生种类的核型相比并无明显区别。尽管如此,翠雀属植物的核型在属内仍表现出一定程度的分化:在多年生种类中,大理翠雀群(D. taliense group)的种类的染色体内部不对称性(intrachromosomal asymmetry) 程度较高, 但染色体之间的不对称性 (interchromosomal asymmetry)程度偏低;一年生种类与多年生种类相比,我国唯一的一年生种还亮草D. anthriscifolium Hance 染色体之间不对称性最高,该种染色体内部不对称性程度在翠雀族中也偏高,因此就其核型的整体不对称性程度而言,在翠雀属乃至整个翠雀族中最高,而地中海分布的一年生种类的染色体内部不对称性明显增强, 但染色体之间的不对称性在翠雀族中最低。这种核型分化的系统学和生物地理学意义尚不清楚,以后需进一步研究。与乌头属相比,翠雀属植物的染色体通常较小,核型中st 染色体明显增多(可达6 对),核型的整体不对称性程度逐渐增强; 虽然乌头属牛扁亚属Aconitum subgen. Lycoctonum (DC.) Peterm.的二倍体种类也一般具有较多的st 染色体(4 对),但这些st 染色体比乌头亚属Aconitum L. subgen. Aconitum和露蕊乌头亚属Aconitum subgen. Gymnaconitum (Stapf) Rapaics 植物核型中相对应的m 或 sm 染色体以及翠雀属和飞燕草属Consolida (DC.) S. F. Gray 植物中相对应的st 或偶尔出现的sm 染色体要大。特别应当注意的是牛扁亚属中外部形态上显得最为原始的展喙乌头A. novoluridum Munz 的核型具有较多而且较大的sm 染色体,所以我们认为展喙乌头的核型保留了较多的原始性质,那些核型中具有较多st 染色体的牛扁亚属植物应当是该亚属中在核型上已比较特化的种类。这一结果不支持前人提出的乌头属植物的核型有从st 染色体进化到m 或sm 染色体的趋势的观点。就整个翠雀族而言,从现有资料看,其核型的进化趋势应当为:(1) 染色体从大进化到小, 从m 或sm 染色体进化到st 染色体;(2) 核型的整体不对称性程度逐渐增强,即核型的二型性从多年生的牛扁亚属植物到翠雀属植物的一年生的还亮草亚属Delphinium subgen. Delphinium 而愈趋明显。翠雀族植物核型的进化方向与整个毛茛科核型的进化方向看来是一致的,即都向核型不对称性增强的方向进化。
Resumo:
Net catches from 1985–86 to 1994–95 at Pivers Island, North Carolina, indicated that glass-eel stage American eels (Anguilla rostrata) were recruited to the estuary from November to early May, with peak numbers in January, February, and March. There was no declining trend in recruitment over the years of sampling. Except for one year, there was no clear seasonal decrease in mean length. But shorter glass eels were older than longer glass eels, as judged by age within the glass eel growth zone of the otolith, suggesting that smaller fish took longer to arrive. The mean age of glass eels collected from the lower estuary and a freshwater site 9.5 km upriver differed by 8.4 d (36.2 vs. 44.6, respectively). Outer increments (30–35) of the otolith growth zone of glass eels from North Carolina were significantly wider than corresponding increments of otoliths from New Brunswick. Mean total ages of North Carolina, New Jersey, and New Brunswick elvers were 175.4, 201.2, and 209.3 d, corresponding to mean lengths of 55.9, 60.9, and 58.1 mm TL, respectively. The mean durations of glass-eel growth zones (44.6, 62.3, and 69.8) were in close agreement with those from previous studies, but total ages were not. This suggested that perhaps some finer (leptocephalus stage) increments were not detected by light microscopy, differences occurred in seasonal increment deposition, or absorption of the otolith material may have taken place during metamorphosis, rendering the aging of larvae inaccurate. Judging from the long recruitment period and seasonal uniformity in both mean age and length found in our study, the spawning period of American eels may be somewhat more protracted than previously considered.
Resumo:
The rich zooplankton standing stock of Dharamtar Creek showed a variation of 8 to 5261 (av. 1032) mg C/100 m super(3)/d which led to a turnover of 29 tonnes C/km super(2)/y. The estimated fishery potential from zooplankton production was 0.079 tonnes C/km super(2) or 29.00 tonnes/km/y. The worked out yield in terms of wet weight of fish was 0.059 tonnes/km2u2/d. Experimental trawling within the creek showed a potential of 0.19 tonnes/km super(2)/d suggesting a transfer coefficient of only 31.4% form secondary to tertiary level. Fish eggs and larvae were very common in the area but contributed collectively only 1% to the total zooplankton population. On an average the outer zone sustained relatively higher population of fish eggs and larvae than the interior zone. The mean population density of larvae (334/100 m super(3)) was 3.5 times higher than fish eggs (93/100 m super(3)) suggesting the good survival rate and a congenial environment for larvae to thrive.
Resumo:
The coastal areas of Bombay are generally turbid and the euphotic zone in these waters hardly exceeds 6 m. Primary productivity is largely confined to surface layers. Nearshore polluted stations have low values of dissolved oxygen, salinity and pH. Nutrients, on the other hand, are high. Primary productivity in these areas was 16.86 mg C m super(-3) d super(-1) in October. Column production for all the 4 stations ranged from 10.32 to 2511.30 mg C m super(-2) d super(-1). A direct correlation was found between nutrients and productivity values.