997 resultados para 111506 Toxicology (incl.Clinical Toxicology)
Resumo:
One hypothesis for the etiology of cell damage arising from iron overload is that its excess selectively affects mitochondria. Here we tested the effects of acute iron overload on liver mitochondria isolated from rats subjected to a single dose of i.p. 500 mg/kg iron-dextran. The treatment increased the levels of iron in mitochondria (from 21 +/- A 4 to 130 +/- A 7 nmol/mg protein) and caused both lipid peroxidation and glutathione oxidation. The mitochondria of iron-treated rats showed lower respiratory control ratio in association with higher resting respiration. The mitochondrial uncoupling elicited by iron-treatment did not affect the phosphorylation efficiency or the ATP levels, suggesting that uncoupling is a mitochondrial protective mechanism against acute iron overload. Therefore, the reactive oxygen species (ROS)/H(+) leak couple, functioning as a mitochondrial redox homeostatic mechanism could play a protective role in the acutely iron-loaded mitochondria.
Resumo:
The dibenzylbutyrolactolic lignan (-)-cubebin was isolated from dry seeds of Piper cubeba L (Piperaceae). (-)-Cubebin possesses anti-inflammatory, analgesic and antimicrobial activities. Doxorubicin (DXR) is a topoisomerase-interactive agent that may induce single- and double-strand breaks, intercalate into the DNA and generate oxygen free radicals. Here, we examine the mutagenicity and recombinogenicity of different concentrations of (-)-cubebin alone or in combination with DXR using standard (ST) and high bioactivation (HB) crosses of the wing Somatic Mutation And Recombination Test in Drosophila melanogaster. The results from both crosses were rather similar. (-)-Cubebin alone did not induce mutation or recombination. At lower concentrations, (-)-cubebin statistically reduced the frequencies of DXR-induced mutant spots. At higher concentrations, however, (-)-cubebin was found to potentiate the effects of DXR, leading to either an increase in the production of mutant spots or a reduction, due to toxicity. These results suggest that depending on the concentration, (-)-cubebin may interact with the enzymatic system that catalyzes the metabolic detoxification of DXR, inhibiting the activity of mitochondria! complex 1 and thereby scavenging free radicals. Recombination was found to be the major effect of the treatments with DXR alone. The combined treatments reduced DXR mutagenicity but did not affect DXR recombinogenicity. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to evaluate possible cytotoxic effects of topical creams and lotions produced with Buriti oil and commercial surfactants on human keratinocytes HaCat and 3T3 embryonic mouse fibroblast cultures. We also aimed to assess the cytotoxicity of the surfactants used to produce the emulsions. The neutral red release (NRR) assay was performed as an in vitro method to evaluate the cytotoxicity of the emulsions in HaCat and 3T3 cell lines and predict potential skin irritation. The Buriti oil emulsions presented low cytotoxicity to the cells at high concentrations and the addition of Vitamin E increased cell viability. Among the surfactant tested, Unitol(R) CE 200F proved to be the most cytotoxic, presenting an IC50 significantly lower than the others. Emulsions formulated with Buriti oil and commercial surfactants could be non irritant to the skin due to their low cytotoxicity, especially when enhanced with vitamin E. When emulsified with Buriti oil, water and Brij 72, Unitol CE200F showed less cytotoxic effects than when tested alone. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
P>The aim of this comparative clinical study was to evaluate a novel bioactive glass-ceramic (Biosilicate (R) 1-20 mu m particles) to treat dentine hypersensitivity (DH). Volunteers (n = 120 patients/ 230 teeth) received the following treatments: G1-Sensodyne (R), G2-SensiKill (R), G3-Biosilicate (R) incorporated in a 1% water-free-gel and G4-Biosilicate (R) mixed with distilled water at 1:10 ratio. G1 and G3 were applied at home, daily for 30 days; G2 and G4 were applied once a week by a dentist (four applications). A visual analogue scale (VAS) was employed to evaluate pain for each quadrant in one sensitive tooth at baseline, weekly during treatment and during a 6-month follow-up period. Dentine hypersensitivity values (G1/n = 52), (G2/n = 62), (G3/n = 59) and (G4/n = 59) were analysed with Kruskal-Wallis/Dunn tests. All the products were efficient in reducing DH after 4 weeks. Among the four materials tested, G4 demonstrated the best clinical performance and provided the fastest treatment to reduce DH pain. Distilled water proved to be an adequate vehicle to disperse Biosilicate (R). Low DH scores were maintained during the 6-month follow-up period. The hypothesis that the novel bioactive glass-ceramic may be an efficient treatment for DH was confirmed.
Resumo:
The dibenzylbutyrolactone lignan (-)-hinokinin (HK) was obtained by partial synthesis from (-)-cubebin, isolated from the dry seeds of the pepper, Piper cubeba. In view of the trypanocidal activity of HK and its potential as a lead compound for drug development, evaluation of its possible genotoxic activity is required. We have tested HK for possible genotoxicity and evaluated the compound`s effect on the activity of the clastogens doxorubicin (DXR) and methyl methanesulfonate (MMS) in the micronucleus (MN) assay with Chinese hamster lung fibroblast V79 cells. HK alone did not induce MN, at concentrations up to 128 mu M. In combined treatments, HK reduced the frequency of MN induced by MMS. With respect to DXR, HK exerted a protective effect at lower concentrations, but at higher concentrations it potentiated DXR clastogenicity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Considering the belief that natural lipids are safer for topical applications and that carotenoids are able to protect cells against photooxidative damage, we have investigated whether topical creams and lotions, produced with Buriti oil and commercial surfactants, can exert photoprotective effect against UVA and UVB irradiation on keratinocytes and fibroblasts. Cell treatment was divided into two steps, prior and after exposition to 30 min of UVA plus UVB radiation or to 60 min of UVA radiation. Emulsions prepared with ethoxylated fatty alcohols as surfactants and containing alpha-tocopherol caused phototoxic damage to the cells, especially when applied prior to UV exposure. Damage reported was due to prooxidant activity and phototoxic effect of the surfactant. Emulsions prepared with Sorbitan Monooleate and PEG-40 castor oil and containing panthenol as active ingredient, were able to reduce the damages caused by radiation when compared to non-treated cells. When the two cell lines used in the study were compared, keratinocytes showed an increase in cell viability higher than fibroblasts. The Buriti oil emulsions could be considered potential vehicles to transport antioxidants precursors and also be used as adjuvant in sun protection, especially in after sun formulations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Baccharis dracunculifolia (Asteraceae), the main botanical source of green propolis, is a shrub of the Brazilian `cerrado`. In folk medicine it is used as an anti-inflammatory agent, mainly for the treatment of gastrointestinal diseases. The aim of the present study was to evaluate the genotoxic and antigenotoxic effects of B. dracunculifolia ethyl acetate extract (Bd-EAE) on Chinese hamster lung fibroblasts (V79 cells) by the comet assay. Methyl methanesulfonate (MMS; 200 mu M) was used as an inducer of DNA damage. Genotoxicity was evaluated using four different concentrations of Bd-EAE: 12.5, 25.0, 50.0 and 100.0 mu g ml(-1). Antigenotoxicity was assessed before, simultaneously, and after treatment with the mutagen. The results showed a significant increase in the frequency of DNA damage in cultures treated with 50.0 and 100.0 mu g ml(-1) Bd-EAE. Regarding its antigenotoxic potential, Bd-EAE reduced the frequency of DNA damage induced by MMS. However, this chemopreventive activity depended on the concentrations and treatment regimens used. The antioxidant activity of phenolic components present in Bd-EAE may contribute to reduce the alkylation damage induced by MMS. In conclusion, our findings confirmed the chemopreventive activity of Bd-EAE and showed that this effect occurs under different mechanism. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
We investigated the effects of the dietary pigment chlorophyll b (CLb) on cisplatin (cDDP)-induced oxidative stress and DNA damage, using the comet assay in mouse peripheral blood cells and the micronucleus (MN) test in bone marrow and peripheral blood cells. We also tested for thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) in liver and kidney tissues, as well as catalase (CAT) activity and GSH in total blood. CLb (0.2 and 0.5 mg/kg b.w.) was administrated by gavage every day for 13 days. On the 14th day of the experiment, 6 mg/kg cDDP or saline was delivered intraperitoneally. Treatment with cDDP led to a significant decrease in DNA migration and an increase in MN frequency in both cell types, bone marrow and peripheral blood cells. In the kidneys of mice treated with cDDP, TBARS levels were increased, whereas GSH levels were depleted in kidney and liver. In mice that were pretreated with CLb and then treated with cDDP, TBARS levels maintained normal concentrations and GSH did not differ from cDDP group. The improvement of oxidative stress biomarkers after CLb pre-treatment was associated with a decrease in DNA damage, mainly for the highest dose evaluated. Furthermore, CLb also slightly reduced the frequency of chromosomal breakage and micronucleus formation in mouse bone marrow and peripheral blood cells. These results show that pre-treatment with CLb attenuates cDDP-induced oxidative stress, chromosome instability, and lipid peroxidation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aims of this study were to evaluate whether air pollution during pre-natal and post-natal phases change habituation and short-term discriminative memories and if oxidants are involved in this process. As secondary objectives, it was to evaluate if the change of filtered to nonfiltered environment could protect the cortex of rats against oxidative stress as well as to modify the behavior of these animals. Wistar, male rats were divided into four groups (n = 12/group): pre and post-natal exposure until adulthood to filtered air (FA); pre-natal period to nonfiltered air (NFA-FA); until (21st post-natal day) and post-natal to filtered air until adulthood (PND21); prenatal to filtered air until PND21 and post-natal to nonfiltered air until adulthood (FA-NFA); pre and post-natal to nonfiltered air (NFA). After 150 days of air pollution exposure, animals were tested in the spontaneous object recognition test to evaluate short-term discriminative and habituation memories. Rats were euthanized; blood was collected for metal determination; cortex dissected for oxidative stress evaluation. There was a significant increase in malondialdehyde (MDA) levels in the NFA group when compared to other groups (FA: 1.730 +/- 0.217; NFA-FA: 1.101 +/- 0.217; FA-NFA: 1.014 +/- 0.300; NFA: 5.978 +/- 1.920 nmol MDA/mg total proteins; p = 0.007). NFA group presented a significant decrease in short-term discriminative (FA: 0.603 +/- 0.106; NFA-FA: 0.669 +/- 0.0666; FA-NFA: 0.374 +/- 0.178; NFA: -0.00631 +/- 0.106 sec; p = 0.006) and an improvement in habituation memories when compared to other groups. Therefore, exposure to air pollution during both those periods impairs short-term discriminative memory and cortical oxidative stress may mediate this process.
Resumo:
Higher blood lead (BPb) levels have been reported in children living in communities that receive fluoride-treated water. Here, we examined whether fluoride co-administered with lead increases BPb and lead concentrations in calcified tissues in Wistar rats exposed to this metal from the beginning of gestation. We exposed female rats and their offspring to control water (Control Group), 100 mg/L of fluoride (F Group), 30 mg/L of lead (Pb Group), or 100 mg/L of fluoride and 30 mg/L of lead (F+ Pb Group) from 1 week prior to mating until offspring was 81 days old. Blood and calcified tissues (enamel, dentine, and bone) were harvested at day 81 for lead and fluoride analyses. Higher BPb concentrations were found in the F+ Pb Group compared with the Pb Group (76.7 +/- 11.0 mu g/dL vs. 22.6 +/- 8.5 mu g/dL, respectively: p <0.001). Two-to threefold higher lead concentrations were found in the calcified tissues in the F+ Pb Group compared with the Pb Group (all p <0.001). Fluoride concentrations were similar in the F and in the F+ Pb Groups. These findings show that fluoride consistently increases BPb and calcified tissues Pb concentrations in animals exposed to low levels of lead and suggest that a biological effect not yet recognized may underlie the epidemiological association between increased BPb lead levels in children living in water-fluoridated communities. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Increased risk of hypertension after methylmercury (MeHg) exposure has been suggested. However, the underlying mechanisms are not well explored. In this paper, we have analyzed whether sub-chronic exposure to MeHg increases systolic blood pressure even at very low levels. In addition, we analyzed if the methylmercury-induced hypertension is associated with a decreased plasmatic nitric oxide levels and with a dysregulation of the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), as well as the levels of MDA and glutathione. For this study, Wistar rats were treated with methylmercury chloride (100 mu g/kg per day) or vehicle. Total treatment time was 100 days. Malondialdehyde (MDA) and circulating NOx levels and superoxide dismutase (SOD) and catalase (CAT) activities were determined in plasma, whereas glutathione levels were determined in erythrocytes. Our results show that long-term treatment at a low level of MeHg affected systolic blood pressure, increasing and reducing the levels of plasmatic MDA and NOx, respectively. However, the activity of SOD did not decrease in the MeHg exposed group when compared to the control. We found a negative correlation between plasmatic nitrite/nitrate (NOx) levels and systolic blood pressure (r = -0.67; P = 0.001), and a positive correlation between MDA and systolic blood pressure (r = 0.61; P = 0.03), thus suggesting increased inhibition of NO formation with the increase of hypertension. In conclusion, long-term exposure to a low dose of MeHg increases the systolic pressure and is associated, at least in part, with increased production of ROS as judged by increased production of malondialdehyde and depressed NO availability.
Resumo:
Genetic factors influence whole blood lead (Pb-B) concentrations in lead exposed subjects. This study aimed at examining the combined effects (haplotype analysis) of three polymorphisms (BsmI, ApaI and FokI) in vitamin D receptor (VDR) gene on Pb-B and on the concentrations of lead in plasma (Pb-P), which is more relevant to lead toxicity, in 150 environmentally exposed subjects. Genotypes were determined by RFLP, and Pb-P and Pb-B were determined by inductively coupled plasma mass spectrometry and by graphite furnace atomic absorption spectrometry, respectively. Subjects with the bb (BsmI polymorphism) or ff (FokI polymorphism) genotypes have lower B-Pb than subjects in the other genotype groups. Subjects with the aa (ApaI polymorphism) or ff genotypes have lower P-Pb than subjects in the other genotype groups. Lower Pb-P, Pb-B, and %Pb-P/Pb-B levels were found in subjects with the haplotype combining the a, b, and f alleles for the ApaI, BsmI, and FokI polymorphisms, respectively, compared with the other haplotype groups, thus suggesting that VDR haplotypes modulate the circulating levels of lead in exposed subjects.
Resumo:
Aim of the study was to find out whether consumption of quercetin (QC), an abundant flavonoid in the human diet, protects against DNA damage caused by exposure to organic mercury. Therefore, rats were treated orally with methylmercury (MeHg) and the flavonoid with doses that reflect the human exposure. The animals received MeHg (30 mu g/kg/bw/day), QC (0.5-50 mg/kg/bw/day), or combinations of both over 45 days. Subsequently, the glutathione levels (GSH) and the activities of glutathione peroxidase (GPx) and catalase (CAT) were determined, and DNA damage was measured in hepatocytes and peripheral leukocytes in single cell gel electrophoresis assays. MeHg decreased the concentration of GSH and the activity of GPx by 17 and 12%, respectively and caused DNA damage to liver and blood cells, while with QC no such effects were seen. When the flavonoid was given in combination with MeHg, the intermediate and the highest concentrations (5.0 and 50.0 mg/kg/bw/day) were found to cause DNA protection; DNA migration was reduced by 54 and 65% in the hepatocytes and by 27 and 36% in the leukocytes; furthermore, the reduction in GSH and GPx levels caused by MeHg treatment was restored. In summary, our results indicate that consumption of QC-rich foods may protect Hg-exposed humans against the adverse health effects of the metal.
Resumo:
In this study we investigated the effects of subacute exposure to methylmercury (MeHg) on male reproductive functions in rats by means of determination of alterations in structural and functional parameters. Adult male Wistar rats received 0, 0.5, 1.0 or 3.0 mg/kg/body weight/day orally, daily MeHg for 14 days. Sperm motility, the relative sperm count and transit time in the caput/corpus epididymis, were all reduced at all doses. The lowest dose increased the number of sperm head abnormalities; daily sperm production was elevated at the intermediate dose; while at the highest dose there was a decrease in serum testosterone levels and a rise in mercury (Hg) content in reproductive organs, liver and kidneys. In conclusion, MeHg exposure produced damages on male reproductive functions which may be attributed, at least in part, to the reduction in serum testosterone levels. These consequences could potentially result in infertility in rats. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The present study evaluates a possible protective effect of fish oil against oxidative damage promoted by methylmercury (MeHg) in sub-chronically exposed rats. Reduced glutathione peroxidase and catalase enzyme activity and reduced glutathione levels were observed in MeHg-exposed animals compared to controls. Methylmercury exposure was also associated with DNA damage. Administration of fish oil to the methylmercury-exposed animals did not ameliorate enzyme activity or glutathione levels. On the other hand, a significant DNA protective effect (about 30%) was observed with fish oil treatment. There were no differences in the total mercury concentration in rat liver, kidney, heart or brain after MeHg administration with or without fish oil co-administration. Histopathological analyses showed a significant leukocyte infiltration in rat tissues after MeHg exposure, but this effect was significantly reduced after co-administration of fish oil. Taken together, our findings demonstrate oxidative damage even after low-level MeHg exposure and the protective effect of fish oil. This protection seems not to be related to antioxidant defenses or mercury re-distribution in rat tissues. It is probably due to the anti-inflammatory effects of fish oil. (C) 2010 Elsevier Inc. All rights reserved.