918 resultados para variable coefficients
Resumo:
Some methods have been developed to calculate the su(q)(2) Clebsch-Gordan coefficients (CGC). Here we develop a method based on the calculation of Clebsch-Gordan generating functions through the use of 'quantum algebraic' coherent states. Calculating the su(q)(2) CGC by means of this generating function is an easy and straightforward task.
Resumo:
In this work, the problem in the loads transport (in platforms or suspended by cables) it is considered. The system in subject is composed for mono-rail system and was modeled through the system: inverted pendulum, car and motor and the movement equations were obtained through the Lagrange equations. In the model, was considered the interaction among of the motor and system dynamics for several potencies motor, that is, the case studied is denominated a non-ideal periodic problem. The non-ideal periodic problem dynamics was analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, one was made it analyzes quantitative of the problem through the analysis of the Floquet multipliers. Finally, the non-ideal problem was controlled. The method that was used for analysis and control of non-ideal periodic systems is based on the Chebyshev polynomial expansion, in the Picard iterative method and in the Lyapunov-Floquet transformation (L-F trans formation). This method was presented recently in [3-9].
Resumo:
This paper presents a multi-cell single-phase high power factor boost rectifier in interleave connection, operating in critical conduction mode, employing a soft-switching technique, and controlled by Field Programmable Gate Array (FPGA). The soft-switching technique is based on zero-current-switching (ZCS) cells, providing ZC (zero-current) turn-on and ZCZV (zero-current-zero-voltage) turn-off for the active switches, and ZV (zero-vohage) turn-on and ZC (zero-current) turn-off for the boost diodes. The disadvantages related to reverse recovery effects of boost diodes operated in continuous conduction mode (additional losses, and electromagnetic interference (EMI) problems) are minimized, due to the operation in critical conduction mode. In addition, due to the interleaving technique, the rectifier's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller has been developed using a hardware description language (VHDL) and implemented using a XC2S200E-SpartanII-E/Xilinx FPGA device, performing a true critical conduction operation mode for all interleaved cells, and a closed-loop to provide the output voltage regulation, like as a preregulator rectifier. Experimental results are presented for a implemented prototype with two and with four interleaved cells, 400V nominal output voltage and 220V(rms) nominal input voltage, in order to verify the feasibility and performance of the proposed digital control through the use of a FPGA device.
Resumo:
In this paper were investigated phase-shift control strategies applied to a four cells interleaved high input-power-factor pre-regulator boost rectifier, operating in critical conduction mode, using a non-dissipative commutation cells and frequency modulation. The digital control has been developed using a hardware description language (VHDL) and implemented using the XC2S200E-SpartanII-E/Xilinx FPGA, performing a true critical conduction operation mode for a generic number of interleaved cells. Experimental results are presented, in order to verify the feasibility and performance of the proposed digital control, through the use of a Xilinx FPGA device.
Resumo:
Varying the parameters of the (X) over bar chart has been explored extensively in recent years. In this paper, we extend the study of the (X) over bar chart with variable parameters to include variable action limits. The action limits establish whether the control should be relaxed or not. When the (X) over bar falls near the target, the control is relaxed so that there will be more time before the next sample and/or the next sample will be smaller than usual. When the (X) over bar falls far from the target but not in the action region, the control is tightened so that there is less time before the next sample and/or the next sample will be larger than usual. The goal is to draw the action limits wider than usual when the control is relaxed and narrower than usual when the control is tightened. This new feature then makes the (X) over bar chart more powerful than the CUSUM scheme in detecting shifts in the process mean.
Resumo:
Several methods have been proposed for calculations of the eccentricity function for a high value of the eccentricity, however they cannot be used when the high degree and order coefficients of gravity fields are taken into account. The method proposed by Wnuk(1) is numerically stable in this case, but when is used. a large number of terms occurs in formulas for geopotential perturbations. In this paper we propose an application of expansions of some functions of the eccentric anomaly E as well as Hansen coefficients in power series of (e - e*), where e* is a fixed value of the eccentricity derived by da Silva Fernandes(2,3,4). These series are convergent for all e < 1.
Resumo:
The spatial distribution of water and sugars in half-fresh apples dehydrated in sucrose solutions (30% and 50% w/w, 27 degrees C) for 2, 4 and 8 h, was determined. Each half was sliced as from the exposed surface. The density, water and sugar contents were determined for each piece. A mathematical model was fitted to the experimental data of the water and sucrose contents considering the overall flux and tissue shrinkage. A numerical method of finite differences permitted the calculation of the effective diffusion coefficients as a function of concentration, using material coordinates and integrating the two differential equations (for water and sucrose) simultaneously. The coefficients obtained were one or even two orders of magnitude lower than those for pure solutions and presented unusual concentration dependence. The behaviour of the apple tissue was also studied using light microscopy techniques to obtain images of the osmotically treated pieces (20%, 30% and 50% w/w sucrose solutions for 2, 4 and 8 h). (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours This article considers the properties of the XBAR chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) XBAR chart are obtained using Markov chains. The VSS XBAR chart is substantially quicker than the traditional XBAR chart in detecting moderate shifts in the process.
Resumo:
This work will propose the control of an induction machine in field coordinates with imposed stator current based on theory of variable structure control and sliding mode. We describe the model of an induction machine in field coordinates with imposed stator current and we show the design of variable structure control and sliding mode to get a desirable dynamic performance of that plant. To estimate the inaccessible states we will use a state observer (estimator) based on field coordinates induction machine. We will present the results of simulations in any operation condition (start, speed reversal and load) and with parameters variation of the machine compared to a PI control scheme.
Resumo:
A number of studies have analyzed various indices of the final position variability in order to provide insight into different levels of neuromotor processing during reaching movements. Yet the possible effects of movement kinematics on variability have often been neglected. The present study was designed to test the effects of movement direction and curvature on the pattern of movement variable errors. Subjects performed series of reaching movements over the same distance and into the same target. However, due either to changes in starting position or to applied obstacles, the movements were performed in different directions or along the trajectories of different curvatures. The pattern of movement variable errors was assessed by means of the principal component analysis applied on the 2-D scatter of movement final positions. The orientation of these ellipses demonstrated changes associated with changes in both movement direction and curvature. However, neither movement direction nor movement curvature affected movement variable errors assessed by area of the ellipses. Therefore it was concluded that the end-point variability depends partly, but not exclusively, on movement kinematics.
Evaluation of water and sucrose diffusion coefficients in potato tissue during osmotic concentration
Resumo:
The water and sucrose effective diffusion coefficients behavior were studied in potato tubers immersed in aqueous sucrose solution, 50% (w/,A), at 27 degreesC. Water and sucrose concentration profiles were measured as function of the position for 3, 6 and 12 h of immersion. These were adjusted to a mathematical model for three components that take into account the bulk flow in a shrinking tissue and the concentration dependence of the diffusion coefficients.The binary effective coefficients were an order of magnitude lower than those for pure solutions of sucrose. These coefficients show an unusual concentration dependence. Analysis of these coefficients as functions of the concentration and position demonstrates that, cellular tissue promotes high resistance to diffusion in the tuber and also the elastic contraction of material influences the species diffusion. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This paper presents an economic design of (X) over bar control charts with variable sample sizes, variable sampling intervals, and variable control limits. The sample size n, the sampling interval h, and the control limit coefficient k vary between minimum and maximum values, tightening or relaxing the control. The control is relaxed when an (X) over bar value falls close to the target and is tightened when an (X) over bar value falls far from the target. A cost model is constructed that involves the cost of false alarms, the cost of finding and eliminating the assignable cause, the cost associated with production in an out-of-control state, and the cost of sampling and testing. The assumption of an exponential distribution to describe the length of time the process remains in control allows the application of the Markov chain approach for developing the cost function. A comprehensive study is performed to examine the economic advantages of varying the (X) over bar chart parameters.