898 resultados para trajectory accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Neuronavigation has become an intrinsic part of preoperative surgical planning and surgical procedures. However, many surgeons have the impression that accuracy decreases during surgery. OBJECTIVE To quantify the decrease of neuronavigation accuracy and identify possible origins, we performed a retrospective quality-control study. METHODS Between April and July 2011, a neuronavigation system was used in conjunction with a specially prepared head holder in 55 consecutive patients. Two different neuronavigation systems were investigated separately. Coregistration was performed with laser-surface matching, paired-point matching using skin fiducials, anatomic landmarks, or bone screws. The initial target registration error (TRE1) was measured using the nasion as the anatomic landmark. Then, after draping and during surgery, the accuracy was checked at predefined procedural landmark steps (Mayfield measurement point and bone measurement point), and deviations were recorded. RESULTS After initial coregistration, the mean (SD) TRE1 was 2.9 (3.3) mm. The TRE1 was significantly dependent on patient positioning, lesion localization, type of neuroimaging, and coregistration method. The following procedures decreased neuronavigation accuracy: attachment of surgical drapes (DTRE2 = 2.7 [1.7] mm), skin retractor attachment (DTRE3 = 1.2 [1.0] mm), craniotomy (DTRE3 = 1.0 [1.4] mm), and Halo ring installation (DTRE3 = 0.5 [0.5] mm). Surgery duration was a significant factor also; the overall DTRE was 1.3 [1.5] mm after 30 minutes and increased to 4.4 [1.8] mm after 5.5 hours of surgery. CONCLUSION After registration, there is an ongoing loss of neuronavigation accuracy. The major factors were draping, attachment of skin retractors, and duration of surgery. Surgeons should be aware of this silent loss of accuracy when using neuronavigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To evaluate the accuracy and reproducibility of aortic annulus sizing using a multislice computed tomography (MSCT) based aortic root reconstruction tool compared with conventional imaging among patients evaluated for transcatheter aortic valve replacement (TAVR). Methods and results: Patients referred for TAVR underwent standard preprocedural assessment of aortic annulus parameters using MSCT, angiography and transoesophageal echocardiography (TEE). Three-dimensional (3-D) reconstruction of MSCT images of the aortic root was performed using 3mensio (3mensio Medical Imaging BV, Bilthoven, The Netherlands), allowing for semi-automated delineation of the annular plane and assessment of annulus perimeter, area, maximum, minimum and virtual diameters derived from area and perimeter (aVD and pVD). A total of 177 patients were enrolled. We observed a good inter-observer variability of 3-D reconstruction assessments with concordance coefficients for agreement of 0.91 (95% CI: 0.87-0.93) and 0.91 (0.88-0.94) for annulus perimeter and area assessments, respectively. 3-D derived pVD and aVD correlated very closely with a concordance coefficient of 0.97 (0.96-0.98) with a mean difference of 0.5±0.3 mm (pVD-aVD). 3-D derived pVD showed the best, but moderate concordance with diameters obtained from coronal MSCT (0.67, 0.56-0.75; 0.3±1.8 mm), and the lowest concordance with diameters obtained from TEE (0.42, 0.31-0.52; 1.9±1.9 mm). Conclusions: MSCT-based 3-D reconstruction of the aortic annulus using the 3mensio software enables accurate and reproducible assessment of aortic annulus dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Narcissists’ perception of others is marked by a negative bias in the service of their own self-enhancement. The aim of this study was to determine whether narcissists’ negative bias extends to the perception of romantic partners too. In addition, we explored whether partners of narcissists succumb to specific perception biases as well. During 14 days, 86 couples completed measures of support given to and received from their partners. The results indicated that both male and female narcissists were more accurate in detecting negative support (e.g., blaming the partner for his or her problems) received from their partners, while female narcissists only were less accurate in perceiving altruistic support motives (e.g., truly enjoying to help the partner) of their male partner. Moreover, narcissists as well as their partners displayed a negative bias by underestimating the amount of altruistic support motives reported by each of them. On the other hand, partners of narcissists were positively biased as well and underestimated the negative support given by the narcissists. Results are discussed in relation to the self-regulatory goals of narcissists and of their partners and with respect to the possible impact of their accuracy and biases on the couple wellbeing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Angiographic C-arm CT may allow performing percutaneous stereotactic tumor ablations in the interventional radiology suite. Our purpose was to evaluate the accuracy of using C-arm CT for single and multimodality image fusions and to compare the targeting accuracy of liver lesions with the reference standard of MDCT. MATERIALS AND METHODS C-arm CT and MDCT scans were obtained of a nonrigid rapid prototyping liver phantom containing five 1-mm targets that were placed under skin-simulating deformable plastic foam. Target registration errors of image fusion were evaluated for single-modality and multimodality image fusions. A navigation system and stereotactic aiming device were used to evaluate target positioning errors on postinterventional scans with the needles in place fused with the C-arm CT or MDCT planning images. RESULTS Target registration error of the image fusion showed no significant difference (p > 0.05) between both modalities. In five series with a total of 25 punctures for each modality, the lateral target positioning error (i.e., the lateral distance between the needle tip and the planned trajectory) was similar for C-arm CT (mean [± SD], 1.6 ± 0.6 mm) and MDCT (1.82 ± .97 mm) (p = 0.33). CONCLUSION In a nonrigid liver phantom, angiographic C-arm CT may provide similar image fusion accuracy for comparison of intra- and postprocedure control images with the planning images and enables stereotactic targeting accuracy similar to that of MDCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of sea surface temperature (SST) anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF) model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east), with increasing (decreasing) SSTs. The main reason is a strengthening of the background flow. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a tropical cyclone. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was comparing the accuracy of capturing the oral pathology diagnoses among different coding systems. 55 diagnoses were selected for comparison among 5 coding systems. The results of accuracy in capturing oral diagnoses are: AFIP (96.4%), followed by Read 99 (85.5%), SNOMED 98 (74.5%), ICD-9 (43.6%), and CDT-3 (14.5%). It shows that the currently used coding systems, ICD-9 and CDT-3, were inadequate, whereas the AFIP coding system captured the majority of oral diagnoses. In conclusion, the most commonly used medical and dental coding systems lack terms for the diagnosis of oral and dental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To determine the prevalence of false or misleading statements in messages posted by internet cancer support groups and whether these statements were identified as false or misleading and corrected by other participants in subsequent postings. DESIGN: Analysis of content of postings. SETTING: Internet cancer support group Breast Cancer Mailing List. MAIN OUTCOME MEASURES: Number of false or misleading statements posted from 1 January to 23 April 2005 and whether these were identified and corrected by participants in subsequent postings. RESULTS: 10 of 4600 postings (0.22%) were found to be false or misleading. Of these, seven were identified as false or misleading by other participants and corrected within an average of four hours and 33 minutes (maximum, nine hours and nine minutes). CONCLUSIONS: Most posted information on breast cancer was accurate. Most false or misleading statements were rapidly corrected by participants in subsequent postings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The PEM Flex Solo II (Naviscan, Inc., San Diego, CA) is currently the only commercially-available positron emission mammography (PEM) scanner. This scanner does not apply corrections for count rate effects, attenuation or scatter during image reconstruction, potentially affecting the quantitative accuracy of images. This work measures the overall quantitative accuracy of the PEM Flex system, and determines the contributions of error due to count rate effects, attenuation and scatter. Materials and Methods: Gelatin phantoms were designed to simulate breasts of different sizes (4 – 12 cm thick) with varying uniform background activity concentration (0.007 – 0.5 μCi/cc), cysts and lesions (2:1, 5:1, 10:1 lesion-to-background ratios). The overall error was calculated from ROI measurements in the phantoms with a clinically relevant background activity concentration (0.065 μCi/cc). The error due to count rate effects was determined by comparing the overall error at multiple background activity concentrations to the error at 0.007 μCi/cc. A point source and cold gelatin phantoms were used to assess the errors due to attenuation and scatter. The maximum pixel values in gelatin and in air were compared to determine the effect of attenuation. Scatter was evaluated by comparing the sum of all pixel values in gelatin and in air. Results: The overall error in the background was found to be negative in phantoms of all thicknesses, with the exception of the 4-cm thick phantoms (0%±7%), and it increased with thickness (-34%±6% for the 12-cm phantoms). All lesions exhibited large negative error (-22% for the 2:1 lesions in the 4-cm phantom) which increased with thickness and with lesion-to-background ratio (-85% for the 10:1 lesions in the 12-cm phantoms). The error due to count rate in phantoms with 0.065 μCi/cc background was negative (-23%±6% for 4-cm thickness) and decreased with thickness (-7%±7% for 12 cm). Attenuation was a substantial source of negative error and increased with thickness (-51%±10% to -77% ±4% in 4 to 12 cm phantoms, respectively). Scatter contributed a relatively constant amount of positive error (+23%±11%) for all thicknesses. Conclusion: Applying corrections for count rate, attenuation and scatter will be essential for the PEM Flex Solo II to be able to produce quantitatively accurate images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prognosis for lung cancer patients remains poor. Five year survival rates have been reported to be 15%. Studies have shown that dose escalation to the tumor can lead to better local control and subsequently better overall survival. However, dose to lung tumor is limited by normal tissue toxicity. The most prevalent thoracic toxicity is radiation pneumonitis. In order to determine a safe dose that can be delivered to the healthy lung, researchers have turned to mathematical models predicting the rate of radiation pneumonitis. However, these models rely on simple metrics based on the dose-volume histogram and are not yet accurate enough to be used for dose escalation trials. The purpose of this work was to improve the fit of predictive risk models for radiation pneumonitis and to show the dosimetric benefit of using the models to guide patient treatment planning. The study was divided into 3 specific aims. The first two specifics aims were focused on improving the fit of the predictive model. In Specific Aim 1 we incorporated information about the spatial location of the lung dose distribution into a predictive model. In Specific Aim 2 we incorporated ventilation-based functional information into a predictive pneumonitis model. In the third specific aim a proof of principle virtual simulation was performed where a model-determined limit was used to scale the prescription dose. The data showed that for our patient cohort, the fit of the model to the data was not improved by incorporating spatial information. Although we were not able to achieve a significant improvement in model fit using pre-treatment ventilation, we show some promising results indicating that ventilation imaging can provide useful information about lung function in lung cancer patients. The virtual simulation trial demonstrated that using a personalized lung dose limit derived from a predictive model will result in a different prescription than what was achieved with the clinically used plan; thus demonstrating the utility of a normal tissue toxicity model in personalizing the prescription dose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our understanding of Earth's carbon climate system depends critically upon interactions between rising atmospheric CO2, changing land use, and nitrogen limitation on vegetation growth. Using a global land model, we show how these factors interact locally to generate the global land carbon sink over the past 200 years. Nitrogen constraints were alleviated by N2 fixation in the tropics and by atmospheric nitrogen deposition in extratropical regions. Nonlinear interactions between land use change and land carbon and nitrogen cycling originated from three major mechanisms: (i) a sink foregone that would have occurred without land use conversion; (ii) an accelerated response of secondary vegetation to CO2 and nitrogen, and (iii) a compounded clearance loss from deforestation. Over time, these nonlinear effects have become increasingly important and reduce the present-day net carbon sink by ~40% or 0.4 PgC yr−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5$\sp\circ$ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1$\sp\circ$ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross-correlation technique were implemented within an experimental radiotherapy picture archival and communication system (RT-PACS) and were used clinically to evaluate the setup variability of two groups of cancer patients treated with and without an alpha-cradle immobilization aid. The tools developed in this project have proven to be very effective and have played an important role in detecting patient alignment errors and field-shape errors in treatment fields formed by a multileaf collimator (MLC). ^