921 resultados para thin foil
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work describes an investigation of the properties of polymer films prepared by plasma immersion ion implantation and deposition. Films were synthesized from low pressure benzene glow discharges, biasing the samples with 25 W negative pulses. The total energy deposited in the growing layer was varied tailoring simultaneously pulse frequency and duty cycle. The effect of the pulse characteristics on the chemical composition and mechanical properties of the films was studied by X-ray photoelectron spectroscopy (XPS) and nanoindentation, respectively. Analysis of the deconvoluted C 1s XPS peaks demonstrated that oxygen was incorporated in all the samples. The chemical modifications induced structural reorganization, characterized by chain cross-linking and unsaturation, affecting material properties. Hardness and plastic resistance parameter increased under certain bombardment conditions. An interpretation is proposed in terms of the total energy delivered to the growing layer. (C) 2004 Elsevier B.V. All rights reserved.
Nanohardness of a Ti thin film and its interface deposited by an electron beam on a 304 SS substrate
Resumo:
The results of nanohardness measurements at a film surface and film-substrate interface are presented and discussed. An electron beam device was used to deposit a Ti film on a 304 stainless steel (304 SS) substrate. The diluted interface was obtained by thermal activated atomic diffusion. The. Ti film and Ti film-304 SS interface were analyzed by energy dispersive spectrometry and were observed using atomic force microscopy. The nanohardness of the Ti film-304 SS system was measured by a nanoindentation technique. The results showed the Ti film-304 SS interface had a higher hardness value than the Ti film and 304 SS substrate. The Ti film surface had a lower hardness due to the presence of a TiO2 thin layer.
Resumo:
In this work, it was used a plasma system composed of a cylindrical stainless steel reactor, a radio-frequency (13.56MHz) power source fixed at either 25 W or 70 W, a power source with a negative bias of 10kV and a 100Hz pulse. The system worked at an operational pressure of 80mTorr which consisted of varying concentrations of the monomer HMDSN and gaseous nitrogen in ratios: HMDSN (mTorr)/nitrogen (mTorr) from 70/10 to 20/60 in terms of operational pressure. The structural characterization of the films was done by FTIR spectroscopy. Absorptions were observed between 3500 cm(-1) to 3200 cm(-1), 3000 cm(-1) to 2900 cm(-1), 2500 cm(-1) to 2000 cm(-1), 1500 cm(-1) to 700 cm(-1), corresponding, respectively, to OH radicals, C-H stretching bonds in CH2 and CH3 molecules, C-N bonds, and finally, strain C-H bonds, Si-CH3 and Si-N groups, for both the 70 W and the 25 W. The contact angle for water was approximately 100 degrees and the surface energy is near 25mJ/m(2) which represents a hydrophobic surface, measured by goniometric method. The aging of the film was also analyzed by measuring the contact angle over a period of time. The stabilization was observed after 4 weeks. The refractive index of these materials presents values from 1.73 to 1.65 measured by ultraviolet-visible technique.
Resumo:
Aqueous-based polyurethane dispersions have been widely utilized as lubricants in textile, shoes, automotive, biomaterial and many other industries because they are less aggressive to surrounding environment. In this work thin films with different thickness were deposited on biocompatible polyurethane by plasma polymerization process using diethylene glycol dimethyl ether (Diglyme) as monomer. Molecular structure of the films was analyzed by Fourier Transform Infrared spectroscopy. The spectra exhibited absorption bands of O-H (3500-3200cm(-1)), C-H (3000-2900cm(-1)), C=O (1730-1650cm(-1)), C-O and C-O-C bonds at 1200-1600cm(-1). The samples wettability was evaluated by measurements of contact angle using different liquids such as water, glycerol, poly-ethane and CMC. The polyurethane surface showed hydrophilic behavior after diglyme plasma-deposition with contact angle dropping from 85(0) to 22(0). Scanning Electron Microscopy revealed that diglyme films covered uniformly the polyurethane surfaces ensuring to it a biocompatible characteristic.
Resumo:
The effect of film orientation on piezoelectric and ferroelectric properties of bismuth layered compounds deposited on platinum coated silicon substrates was investigated. Piezo-force microscopy was used to probe the local piezoelectric properties of Bi(4)Ti(3)O(12), CaBi(4)Ti(4)O(15) and SrBi(4)Ti(4)O(15) films. Our measurements on individual grains clearly reveal that the local piezoelectric properties are determined by the polarization state of the grain. A piezoelectric coefficient of 65 pm/V was attained after poling in a grain with a polar axis very close to the normal direction. The piezoelectric coefficient and the remanent polarization were larger for a-b axes oriented than for c-axis-oriented films. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
SrBi4Ti4O15 (SBTi) thin films were obtained by the polymeric precursor method and crystallized in a domestic microwave oven. For comparison, films were also crystallized in a conventional furnace at 700 degrees C for 2 h. Structural and morphological characterization of the SBTi thin films was investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Using platinum coated silicon substrates configuration, ferroelectric properties of the films were determined with remanent\polarization P-r and a coercive field E-c of 5.1 mu C/cm(2) and 135 kV/cm for the film thermally treated in the microwave oven and 5.4 mu C/cm(2) and 85 kV/cm for the film thermally treated in conventional furnace, respectively. The films thermally treated in the conventional furnace exhibited excellent fatigue-free characteristics up to 10(10) switching cycles indicating that SBTi thin films can be a promise material for use in non-volatile memories. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Thin films of SrBi4Ti4O15 (SBTi), a prototype of the Bi-layered-ferroelectric oxide family, were obtained by a soft chemical method and crystallized in a domestic microwave oven. For comparison, films were also crystallized in a conventional method at 700 degrees C for 2 h. Structural and morphological characterization of the SBTi thin films were investigated by Xray diffraction (XRD) and atomic force microscopy (AFM), respectively. Using platinum coated silicon substrates, the ferroelectric properties of the films were determined. Remanent polarization P-r and a coercive field E-c values of 5.1 mu C/cm(2) and 135 kV/cm for the film thermally treated in the microwave oven and 5.4 mu C/cm(2) and 85 kv/cm for the film thermally treated in conventional furnace were found. The films thermally treated in the conventional furnace exhibited excellent fatigue-free characteristics up to 10(10) switching cycles indicating that SBTi thin films are a promising material for use in non-volatile memories. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Bi3.25La0.75Ti3O12 (BLT) thin films were grown on LaNiO3 (LNO), RuO2 (RuO2) and La0.5Sr0.5CoO3 (LSCO) bottom electrodes by using the polymeric precursor method and microwave furnace. The bottom electrode is found to be an important parameter which affects the crystallization, morphology and leakage current behaviors. The XRD results clearly show that film deposited on LSCO electrode favours the growth of (117) oriented grains whereas in films deposited on LNO and RuO2 the growth of (001) oriented grains dominated. The film deposited on LSCO has a plate-like grain structure, and its leakage current behavior is in agreement with the prediction of the space-charge-limited conduction model. on the other hand, the films deposited on RuO2 and LNO electrodes present a rounded grain shape with some porosity, and its high field conduction is well explained by the Schottky and Poole-Frenkel emission models. The remanent polarization (P-r) and the drive voltage (V-c) were in the range of 11-23 mu C cm(-2) and 0.86-1.56 V, respectively, and are better than the values found in the literature. (c) 2007 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PbTiO3 thin films were deposited on Si(100) via hybrid chemical method and crystallized between 400 and 700 degreesC to study the effect of the crystallization kinetics on structure and microstructure of these materials. X-ray diffraction (XRD) technique was used to study the structure of the crystallized films. In the temperature range investigated, the lattice strain (c/a) presented a maximum value (c/a = 1.056) for film crystallized at 600 degreesC for I h. Atomic force microscopy (AFM) was used in investigation of the microstructure of the films. The rms roughness of the films linearly increases with temperature and ranged from 1.25 to 9.04 nm while the grain sizes ranged from 130.6 to 213.6 nm. Greater grain size was observed for film crystallized at 600 degreesC for 1 h. (C) 2002 Elsevier B.V. S.A. All rights reserved.
Resumo:
This paper reports studies on dielectric and ferroelectric properties of lead zirconate titanate (PZT) thin films crystallized by conventional thermal annealing (CTA) and rapid thermal annealing (RTA) in air, oxygen and nitrogen atmospheres to better understand, control and optimize these properties. The dielectric constant (epsilon) and dissipation factor (tan delta) values, at a frequency of 100 kHz; for film crystallized in air by CTA process, were 358 and 0.039, respectively. Considering the same frequency for film crystallized in air by RTA, these values were 611 and 0.026, respectively. The different dielectric values were justified by a space-charge or interfacial polarization in films, often characterized as Maxwell-Wagner type. This effect was also responsible to dispersion at frequencies above 1 MHz in film crystallized in air by CTA process and film crystallized by RTA in oxygen atmosphere. The film crystallized by RTA under nitrogen atmosphere presented an evident dispersion at frequencies around 100 Hz, characterized by an increase in both epsilon and tan delta. This dispersion was attributed to conductivity effects. The remanent polarization (P-r) and coercive field (E-c) were also obtained for all films. Films obtained from RTA in air presented higher P-r (17.8 muC cm(-2)) than film crystallized from CTA (7.8 muC cm(-2)). As a function of the crystallization atmospheres, films crystallized by RTA in air and nitrogen presented essentially the same P-r values (around 18 muC cm(-2)) but the P-r (3.9 muC cm(-2)) obtained from film crystallized under oxygen atmosphere was profoundly influenced.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)