956 resultados para sustainability science
Resumo:
Among the Australian general public, there are increasing concerns about environmental issues. Accordingly, sustainability in the housing industry is also becoming a priority on the development agenda. However, putting the principles of ecological sustainability into practice within social and economic development requires intensive involvement of major stakeholders such as governments, developers, builders, consumers and a range of other professionals. Establishing a sustainable value entails asymmetric life-cycle returns, making it important for major stakeholders to appreciate the benefits of this new agenda not only for the individual businesses but also for other supply chain partners. This context warrants the study to promote collective benefits for key stakeholders by establishing a mutual-benefit framework for sustainable housing implementation. A research was carried out in the hope to establish a mutual-benefit framework by investigating challenges of achieving benefits (CABs) from sustainable housing development in a multi-stakeholder context. In the research work reported in this article, a comparative questionnaire study was first conducted among seven stakeholder groups in the Australian housing industry, to examine the importance and inter-relationships of CABs. In-depth interviews then furthered the survey findings with a focus on stakeholder diversity. The synthesized findings of the survey and interview study lead to the identification of 12 critical mutual-benefit factors and their mutual influence. Based on such a platform, a systematic framework is developed with the aid of Interpretive Structural Modelling (ISM), to identify the patterns of stakeholder benefit materialisation, suggest the priority of critical factors and provide related stakeholder-specific action guide for sustainable housing implementation.
Resumo:
Strong regulatory pressure on environmental issues and the improved public awareness will continue to influence the market demand for sustainable housing in the coming years. Despite this potential, the voluntary up-take rate of sustainable practices is not as high as expected within the new built housing industry. This is in contrast to the influx of emerging building technologies, new materials and innovative designs as seen in office buildings and exemplar homes built worldwide. One possible reason for this is that key stakeholders such as developers, builders and consumers do not fully understand and appreciate the tangible and mutual benefits of sustainability in their professional and business activities. This situation warrants the study of a multifaceted strategy that integrates the needs of multiple stakeholders. This research investigates multiple factors that affect key stakeholder’s benefits in sustainable housing implementation. Drawing insights from a quantitative study on a questionnaire survey and a qualitative study of in-depth interviews with key stakeholders in the Australian housing industry, 11 critical factors of driving market demand for sustainable housing were unearthed. Their inter-relationships were identified with the aid of Interpretive Structural Modelling. The study concludes with a hierarchical model that amalgamates the strategies for the decision making of key stakeholders.
Resumo:
In managing their operations, organizations have traditionally focused on economic imperatives in terms of time, cost, efficiency, and quality. In doing so, they have been a major contributor to environmental degradation caused by re-source consumption, greenhouse emissions, and wastage. As a consequence, or-ganizations are increasingly encouraged to improve their operations also from an ecological perspective, and thus to consider environmental sustainability as an additional management imperative. In order to lessen their impact on the natural environment, organizations must design and implement environmentally sustainable processes, which we call the challenge of Green Business Process Management (Green BPM). This chapter elaborates on the challenge and perspec-tive of Green BPM, and explores the contributions that business process management can provide to creating environmentally sustainable organizations. Our key premise is that business as well as information technology managers need to engage in a process-focused discussion to enable a common, comprehensive understanding of organizational processes, and the process-centered opportunities for making these processes, and ultimately the organization as a process-centric entity, “green.” Through our review of the key BPM capability areas and how they can be framed in terms of environmental sustainability considerations, we provide an overview and introduction to the subsequent chapters in this book.
Resumo:
Many corporations and individuals realize that environmental sustainability is an urgent problem to address. In this chapter, we contribute to the emerging academic discussion by proposing two innovative approaches for engaging in the development of environmentally sustainable business processes. Specifically, we describe an extended process modeling approach for capturing and documenting the dioxide emissions produced during the execution of a business process. For illustration, we apply this approach to the case of a governmental Shared Services provider. Second, we then introduce an analysis method for measuring the carbon dioxide emissions produced during the execution of a business process. To illustrative this approach, we apply it in the real-life case of an European airport and show how this information can be leveraged in the re-design of “green” busi-ness processes.
Resumo:
Recent studies suggest that meta-evaluation can be valuable in developing new approaches to evaluation, building evaluation capacities, and enhancing organizational learning. These new extensions of the concept of meta-evaluation are significant, given the growing emphasis on improving the quality and effectiveness of evaluation practices in the South Asian region. Following a review of the literature, this paper presents a case study of the use of concurrent meta-evaluation in the four-year project Assessing Communication for Social Change which developed and trialled a participatory impact assessment methodology in collaboration with a development communication Non-government organization (NGO) in Nepal. Key objectives of the meta-evaluation included to: continuously develop, adapt and improve the impact assessment methodology, Monitoring and Evaluation (M&E) systems and process and other project activities; identify impacts of the project; and build capacities in critical reflection and review. Our analysis indicates that this meta-evaluation was essential to understanding various constraints related to the organizational context that affected the success of the project and the development of improved M&E systems and capacities within the NGO. We identified several limitations of our meta-evaluation methods, which were balanced by the strengths of other methods. Our case study suggests that as well as assessing the quality, credibility and value of evaluation practices, meta-evaluations need to focus on important contextual issues that can have significant impacts on the outcomes of participatory evaluation projects. They include hierarchical organizational cultures, communication barriers, power/knowledge relations, and the time and resources available. Meta-evaluations also need to consider wider issues such as the sustainability of evaluation systems and approaches.
Resumo:
Expert knowledge is used widely in the science and practice of conservation because of the complexity of problems, relative lack of data, and the imminent nature of many conservation decisions. Expert knowledge is substantive information on a particular topic that is not widely known by others. An expert is someone who holds this knowledge and who is often deferred to in its interpretation. We refer to predictions by experts of what may happen in a particular context as expert judgments. In general, an expert-elicitation approach consists of five steps: deciding how information will be used, determining what to elicit, designing the elicitation process, performing the elicitation, and translating the elicited information into quantitative statements that can be used in a model or directly to make decisions. This last step is known as encoding. Some of the considerations in eliciting expert knowledge include determining how to work with multiple experts and how to combine multiple judgments, minimizing bias in the elicited information, and verifying the accuracy of expert information. We highlight structured elicitation techniques that, if adopted, will improve the accuracy and information content of expert judgment and ensure uncertainty is captured accurately. We suggest four aspects of an expert elicitation exercise be examined to determine its comprehensiveness and effectiveness: study design and context, elicitation design, elicitation method, and elicitation output. Just as the reliability of empirical data depends on the rigor with which it was acquired so too does that of expert knowledge.
Resumo:
In order to promote green building practice in Australia, the Green Building Council of Australia (GBCA) launched the Green Star rating tools for various types of buildings built since 2003. Of these, the Green Star-Education rating tool addresses sustainability issues during the design and construction phrases of education facility development. It covers a number of categories, including Management, Indoor Environment Quality, Energy, Transport, Water, Materials, Land Use & Ecology, Emissions and Innovation. This paper reviews the use of the Green Star system in Australian education facilities construction and the potential challenges associated with Green Star- Education implementation. Score sheets of 34 education projects across Australia that achieved Green Star certification were collected and analysed. The percentage of green star points obtained within each category and sub-category (credits) for each project were analysed to illustrate the achievement of credits. The results show that management-related credits and ecology-related credits are the easiest and most difficult to obtain respectively. The study also indicted that 6 Green Star education projects obtained particularly high percentages in the Innovation category. The investigation of points obtained in each category provides prospective Green Star applicants with insights into credit achievement for future projects.
Resumo:
Sustainability issues in built environment have attracted an increasingly level of attention from both the general public and the industry. As a result, a number of green building assessment tools have been developed such as the Leadership in Energy and Environmental Design (LEED) and the BRE Environmental Assessment Method (BREEAM), etc. This paper critically reviewed the assessment tools developed in Australian context, i.e. the Green Star rating tools developed by the Green Building Council of Australia. A particular focus is given to the recent developments of these assessment tools. The results showed that the office buildings take the biggest share of Green Star rated buildings. Similarly, sustainable building assessments seem to be more performance oriented which focuses on the operation stage of buildings. In addition, stakeholder engagement during the decision making process is encouraged. These findings provide useful references to the development of next generation of sustainable building assessment tools.
Resumo:
Background: Outside the mass-spectrometer, proteomics research does not take place in a vacuum. It is affected by policies on funding and research infrastructure. Proteomics research both impacts and is impacted by potential clinical applications. It provides new techniques & clinically relevant findings, but the possibilities for such innovations (and thus the perception of the potential for the field by funders) are also impacted by regulatory practices and the readiness of the health sector to incorporate proteomics-related tools & findings. Key to this process is how knowledge is translated. Methods: We present preliminary results from a multi-year social science project, funded by the Canadian Institutes of Health Research, on the processes and motivations for knowledge translation in the health sciences. The proteomics case within this wider study uses qualitative methods to examine the interplay between proteomics science and regulatory and policy makers regarding clinical applications of proteomics. Results: Adopting an interactive format to encourage conference attendees’ feedback, our poster focuses on deficits in effective knowledge translation strategies from the laboratory to policy, clinical, & regulatory arenas. An analysis of the interviews conducted to date suggests five significant choke points: the changing priorities of funding agencies; the complexity of proteomics research; the organisation of proteomics research; the relationship of proteomics to genomics and other omics sciences; and conflict over the appropriate role of standardisation. Conclusion: We suggest that engagement with aspects of knowledge translation, such as those mentioned above, is crucially important for the eventual clinical application ofproteomics science on any meaningful scale.
Resumo:
As with other major developed cities, the sub-tropical and fastest growing Australian capital city of Brisbane has adopted policies designed to increase residential densities and meet the liveability and sustainability goal of decreasing car dependence and greenhouse gas emissions. This goal hinges on a pedestrian friendly environment and walkable proximity to satisfy everyday needs. While older people are particularly attracted to sub-tropical urban environments, there has been little empirical evidence linking liveability satisfaction and perceived and actual use of older people’s urban neighbourhood. Using qualitative (diaries and in-depth interviews) and quantitative (Global Positioning Systems and Geographical Information Systems mapping) liveability research data this paper explores whether high density supports liveability and is sustainable for older people living in a sub-tropical urban environment. This paper links satisfaction and perceived use of the sub-tropical urban Brisbane environment with actual mapped characteristics and use. Linking the two methods (both quantitative and qualitative) is important in obtaining a greater understanding of human behaviour and the lived world of older urban Australians and in providing a wider picture of sub-tropical urban neighbourhoods for a significant population group within those neighbourhoods. What emerges from the research is an uneven standard of design, provision of amenities and maintenance of the public realm which negatively impacts on local neighbourhood participation by older urban Australians. By highlighting these issues this research furthers the understanding of design factors which make the sub-tropical urban neighbourhood more liveable and sustainable for older people and will inform actionable and implementable policies, programs and designs.
Resumo:
Purpose – This purpose of this paper is to introduce the new Smart and Sustainable Built Environment (SASBE) journal to readers by discussing the background and underlying principles of its establishment, the editorial visions, and the range of papers selected in this first issue. It will encourage readers and potential authors to consider the need for integrated approaches to sustainability problems, to take on emerging challenges in the built environment and to join the SASBE journal in finding and promoting optimum solutions. Design/methodology/approach – This paper explores the evolving nature of sustainability, the recent trends of sustainability endeavours in built environment and the current knowledge gaps. The need to bridge these gaps is then discussed in the context of suggested remedies and justifications. This leads to the development of a smart and sustainable built environment as a R&D philosophy for world researchers as part of their interactions with professional bodies and agencies such as CIB, UNEP and iiSBE, and the establishment of the SASBE journal. Findings – Sustainable development in the built environment requires holistic thinking and decision making and innovative solutions that enhance sustainability and result in mutually beneficial outcomes for all stakeholders. A dedicated forum, through the journal of SASBE, is much needed for the exploration, discussion, debate, and promotion of these integrated approaches. Originality/value – Through presenting an overview of the current issues and identifying gaps in the understanding and pursuit of sustainability in the built environment, this paper suggests potential areas for future research and practice as well as possible topics for authors to make new contributions.
Resumo:
In this article, I present my experience with integrating an alternate reality gaming (ARG) framework into a pre-service science teacher education course. My goal is to provide an account of my experiences that can inform other science education practitioners at the tertiary and secondary levels that wish to adopt a similar approach in their classes. A game was designed to engage pre-service teachers with issues surrounding the declining enrolments in science, technology, engineering and mathematics disciplines (i.e., the STEM crisis; Tytler, 2007) and ways of re-engaging learners with STEM subjects. The use of ARG in science education is highly innovative. Literature on the use of ARG for educational purposes is scarce so in the article I have drawn on a range of available literature on gaming and ARG to define what it is and to suggest how it can be included in school science classrooms.
Resumo:
Exposures to traffic-related air pollution (TRAP) can be particularly high in transport microenvironments (i.e. in and around vehicles) despite the short durations typically spent there. There is a mounting body of evidence that suggests that this is especially true for fine (b2.5 μm) and ultrafine (b100 nm, UF) particles. Professional drivers, who spend extended periods of time in transport microenvironments due to their job, may incur exposures markedly higher than already elevated non-occupational exposures. Numerous epidemiological studies have shown a raised incidence of adverse health outcomes among professional drivers, and exposure to TRAP has been suggested as one of the possible causal factors. Despite this, data describing the range and determinants of occupational exposures to fine and UF particles are largely conspicuous in their absence. Such information could strengthen attempts to define the aetiology of professional drivers' illnesses as it relates to traffic combustion-derived particles. In this article, we suggest that the drivers' occupational fine and UF particle exposures are an exemplar case where opportunities exist to better link exposure science and epidemiology in addressing questions of causality. The nature of the hazard is first introduced, followed by an overview of the health effects attributable to exposures typical of transport microenvironments. Basic determinants of exposure and reduction strategies are also described, and finally the state of knowledge is briefly summarised along with an outline of the main unanswered questions in the topic area.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
The increasing ecological awareness and stringent requirements for environmental protection have led to the development of water lubricated bearings in many applications where oil was used as the lubricant. The chapter details the theoretical analysis to determine both the static and dynamic characteristics,including the stability (using both the linearised perturbation method and the nonlinear transient analysis) of multiple axial groove water lubricated bearings. Experimental measurements and computational fluid dynamics (CFD) simulations by the Tribology research group at Queensland University of Technology,Australia and Manipal Institute of Technology, India, have highlighted a significant gap in the understanding of the flow phenomena and pressure conditions within the lubricating fluid. An attempt has been made to present a CFD approach to model fluid flow in the bearing with three equi-spaced axial grooves and supplied with water from one end of the bearing. Details of the experimental method used to measure the film pressure in the bearing are outlined. The lubricant is subjected to a velocity induced flow (as the shaft rotates) and a pressure induced flow (as the water is forced from one end of the bearing to the other). Results are presented for the circumferential and axial pressure distribution in the bearing clearance for different loads, speeds and supply pressures. The axial pressure profile along the axial groove located in the loaded part of the bearing is measured. The theoretical analysis shows that smaller the groove angle better will be the load-carrying capacity and stability of these bearings. Results are compared with experimentally measured pressure distributions.