971 resultados para statistical science
Resumo:
The development of scientifically literate citizens remains an important priority of science education; however, growing evidence of students’ disenchantment with school science continues to challenge the realisation of this aim. This triangulation mixed methods study investigated the learning experiences of 152 9th grade students as they participated in an online science-writing project on the socioscientific issue of biosecurity. Students wrote a series of hybridized scientific narratives, or BioStories, that integrate scientific information about biosecurity with narrative storylines. The students completed an online Likert-style questionnaire, the BioQuiz, which examined selected aspects of their attitudes toward science and science learning, prior to their participation in the project, and upon completion of the writing tasks. Statistical analyses of these results and interview data obtained from participating students suggest that hybridized writing about a socioscientific issue developed more positive attitudes toward science and science learning, particularly in terms of the students’ interest and enjoyment. Implications for research and teaching are also discussed.
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.
Resumo:
How can Australian library and information science (LIS) education produce, in a sustainable manner, the diverse supply of graduates with the appropriate attributes to develop and maintain high quality professional practice in the rapidly changing 21st century? This report presents the key findings of a project that has examined this question through research into future directions for LIS education in Australia. Titled Re-conceptualising and re-positioning Australian library and information science education for the twenty-first century, the purpose of the project was to establish a consolidated and holistic picture of the Australian LIS profession, and identify how its future education and training can be mediated in a cohesive and sustainable manner. The project was undertaken with a team of 12 university and vocational LIS educators from 11 institutions around Australia between November 2009 and December 2010. Collectively, these eleven institutions represented the broad spectrum and diversity of LIS education in Australia, and enabled the project to examine education for the information profession in a holistic and synergistic manner. Participating institutions in the project included Queensland University of Technology (Project Leader), Charles Sturt University, Curtin University of Technology, Edith Cowan University, Monash University, RMIT University, University of Canberra, University of South Australia, University of Tasmania, University of Technology Sydney and Victoria University. The inception and need for the project was motivated by a range of factors. From a broad perspective several of these factors relate to concerns raised at national and international levels regarding problems with education for LIS. In addition, the motivation and need for the project also related to some unique challenges that LIS education faces in the Australian tertiary education landscape. Over recent years a range of responses to explore the various issues confronting LIS education in Australia have emerged at local and national levels however this project represented the first significant investment of funding for national research in this area. In this way, the inception of the project offered a unique opportunity and powerful mechanism through which to bring together key stakeholders and inspire discourse concerning future education for the profession. Therefore as the first national project of its kind, its intent has been to provide foundation research that will inform and guide future directions for LIS education and training in Australia. The primary objective of the project was to develop a Framework for the Education of the Information Professions in Australia. The purpose of this framework was to provide evidence based strategic recommendations that would guide Australia’s future education for the information professions. Recognising the three major and equal players in the education process the project was framed around three areas of consideration: LIS students, the LIS workforce and LIS educators. Each area of consideration aligned to a research substudy in the project. The three research substudies were titled Student Considerations, Workforce Planning Considerations and Tertiary Education Considerations. The Students substudy provided a profile of LIS students and an analysis of their choices, experiences and expectations in regard to LIS education and their graduate destinations. The Workforce substudy provided an overview and analysis of the nature of the current LIS workforce, including a focus on employer expectations and employment opportunities and comment on the core and elective skill, knowledge and attitudes of current and future LIS professionals. Finally the Tertiary Education substudy provided a profile of LIS educators and an analysis of their characteristics and experiences including the key issues and challenges. In addition it also explored current national and international trends and priorities impacting on LIS education. The project utilised a Community Based Participatory Research (CBPR) approach. This approach involves all members of the community in all aspects of the project. It recognised the unique strengths and perspectives that community members bring to the process. For this project ‘community’ comprised of all individuals who have a role in, or a vested interest in, LIS education and included LIS educators, professionals, employers, students and professional associations. Individuals from these sub-groups were invited to participate in a range of aspects of the project from design through to implementation and evaluation. A range of research methodologies were used to consider the many different perspectives of LIS education, including employers and recruiters, professional associations, students, graduates and LIS teaching staff. Data collection involved a mixed method approach of questionnaires, focus groups, semi-structured interviews and environmental scans. An array of approaches was selected to ensure that broadest possible access to different facets of the information profession would be achieved. The main findings and observations from each substudy have highlighted a range of challenges for LIS education that need to be addressed. These findings and observations have grounded the development of the Framework for the Education of the Information Professions in Australia. The framework presents eleven recommendations to progress the national approach to LIS education and guide Australia’s future education for the information professions. The framework will be used by the LIS profession, most notably its educators, as strategic directions for the future of LIS education in Australia. Framework for the Education of the Information Professions in Australia: Recommendation 1: It is recommended that a broader and more inclusive vocabulary be adopted that both recognises and celebrates the expanding landscape of the field, for example ‘information profession’, ‘information sector’, ‘information discipline’ and ‘information education’. Recommendation 2: It is recommended that a self-directed body composed of information educators be established to promote, support and lead excellence in teaching and research within the information discipline. Recommendation 3: It is recommended that Australia’s information discipline continue to develop excellence in information research that will raise the discipline’s profile and contribute to its prominence within the national and international arena. Recommendation 4: It is recommended that further research examining the nature and context of Australia’s information education programs be undertaken to ensure a sustainable and relevant future for the discipline. Recommendation 5: It is recommended that further research examining the pathways and qualifications available for entry into the Australian information sector be undertaken to ensure relevance, attractiveness, accessibility and transparency. Recommendation 6: It is recommended that strategies are developed and implemented to ensure the sustainability of the workforce of information educators. Recommendation 7: It is recommended that a national approach to promoting and marketing the information profession and thereby attracting more students to the field is developed. Recommendation 8: It is recommended that Australia’s information discipline continues to support a culture of quality teaching and learning, especially given the need to accommodate a focus on the broader information landscape and more flexible delivery options. Recommendation 9: It is recommended that strategies are developed that will support and encourage collaboration between information education within the higher education and VET sectors. Recommendation 10: It is recommended that strategies and forums are developed that will support the information sector working together to conceptualise and articulate their professional identity and educational needs. Recommendation 11: It is recommended that a research agenda be established that will identify and prioritise areas in which further development or work is needed to continue advancing information education in Australia. The key findings from this project confirm that a number of pressing issues are confronting LIS education in Australia. Left unaddressed these issues will have significant implications for the future of LIS education as well as the broader LIS profession. Consequently creating a sustainable and cohesive future can only be realised through cooperation and collaboration among all stakeholders including those with the capacity to enact radical change in university and vocational institutions. Indeed the impending adoption and implementation of the project’s recommendations will fundamentally determine whether Australian LIS education is assured both for the present day and into the future.
Resumo:
This chapter focuses on two challenges to science teachers’ knowledge that Fensham identifies as having recently emerged—one a challenge from beyond Science and the other a challenge from within Science. Both challenges stem from common features of contemporary society, namely, its complexity and uncertainty. Both also confront science teachers with teaching situations that contrast markedly with the simplicity and certainty that have been characteristic of most school science education, and hence both present new demands for science teachers’ knowledge and skill. The first, the challenge from without Science, comes from the new world of work and the “knowledge society”. Regardless of their success in traditional school learning, many young persons in many modern economies are now seen as lacking other knowledge and skills that are essential for their personal, social and economic life. The second, the challenge from within Science, derives from changing notions of the nature of science itself. If the complexity and uncertainty of the knowledge society demand new understandings and contributions from science teachers, these are certainly matched by the demands that are posed by the role of complexity and uncertainty in science itself.
Resumo:
A review of "Progressing science education: constructing the scientific research programme into the contingent nature of learning science", by Keith S. Taber, Dordrecht, Springer, 2009.
Resumo:
Computer resource allocation represents a significant challenge particularly for multiprocessor systems, which consist of shared computing resources to be allocated among co-runner processes and threads. While an efficient resource allocation would result in a highly efficient and stable overall multiprocessor system and individual thread performance, ineffective poor resource allocation causes significant performance bottlenecks even for the system with high computing resources. This thesis proposes a cache aware adaptive closed loop scheduling framework as an efficient resource allocation strategy for the highly dynamic resource management problem, which requires instant estimation of highly uncertain and unpredictable resource patterns. Many different approaches to this highly dynamic resource allocation problem have been developed but neither the dynamic nature nor the time-varying and uncertain characteristics of the resource allocation problem is well considered. These approaches facilitate either static and dynamic optimization methods or advanced scheduling algorithms such as the Proportional Fair (PFair) scheduling algorithm. Some of these approaches, which consider the dynamic nature of multiprocessor systems, apply only a basic closed loop system; hence, they fail to take the time-varying and uncertainty of the system into account. Therefore, further research into the multiprocessor resource allocation is required. Our closed loop cache aware adaptive scheduling framework takes the resource availability and the resource usage patterns into account by measuring time-varying factors such as cache miss counts, stalls and instruction counts. More specifically, the cache usage pattern of the thread is identified using QR recursive least square algorithm (RLS) and cache miss count time series statistics. For the identified cache resource dynamics, our closed loop cache aware adaptive scheduling framework enforces instruction fairness for the threads. Fairness in the context of our research project is defined as a resource allocation equity, which reduces corunner thread dependence in a shared resource environment. In this way, instruction count degradation due to shared cache resource conflicts is overcome. In this respect, our closed loop cache aware adaptive scheduling framework contributes to the research field in two major and three minor aspects. The two major contributions lead to the cache aware scheduling system. The first major contribution is the development of the execution fairness algorithm, which degrades the co-runner cache impact on the thread performance. The second contribution is the development of relevant mathematical models, such as thread execution pattern and cache access pattern models, which in fact formulate the execution fairness algorithm in terms of mathematical quantities. Following the development of the cache aware scheduling system, our adaptive self-tuning control framework is constructed to add an adaptive closed loop aspect to the cache aware scheduling system. This control framework in fact consists of two main components: the parameter estimator, and the controller design module. The first minor contribution is the development of the parameter estimators; the QR Recursive Least Square(RLS) algorithm is applied into our closed loop cache aware adaptive scheduling framework to estimate highly uncertain and time-varying cache resource patterns of threads. The second minor contribution is the designing of a controller design module; the algebraic controller design algorithm, Pole Placement, is utilized to design the relevant controller, which is able to provide desired timevarying control action. The adaptive self-tuning control framework and cache aware scheduling system in fact constitute our final framework, closed loop cache aware adaptive scheduling framework. The third minor contribution is to validate this cache aware adaptive closed loop scheduling framework efficiency in overwhelming the co-runner cache dependency. The timeseries statistical counters are developed for M-Sim Multi-Core Simulator; and the theoretical findings and mathematical formulations are applied as MATLAB m-file software codes. In this way, the overall framework is tested and experiment outcomes are analyzed. According to our experiment outcomes, it is concluded that our closed loop cache aware adaptive scheduling framework successfully drives co-runner cache dependent thread instruction count to co-runner independent instruction count with an error margin up to 25% in case cache is highly utilized. In addition, thread cache access pattern is also estimated with 75% accuracy.
Resumo:
This paper outlines a study to determine the correlation between the LA10(18hour) and other road traffic noise indicators. It is based on a database comprising of 404 measurement locations including 947 individual days of valid noise measurements across numerous circumstances taken between November 2001 and November 2007. This paper firstly discusses the need and constraints on the indicators and their nature of matching a suitable indicator to the various road traffic noise dynamical characteristics. The paper then presents a statistical analysis of the road traffic noise monitoring data, correlating various indicators with the LA10(18hour) statistical indicator and provides a comprehensive table of linear correlations. There is an extended analysis on relationships across the night time period. The paper concludes with a discussion on the findings.
Resumo:
Continuum, partial differential equation models are often used to describe the collective motion of cell populations, with various types of motility represented by the choice of diffusion coefficient, and cell proliferation captured by the source terms. Previously, the choice of diffusion coefficient has been largely arbitrary, with the decision to choose a particular linear or nonlinear form generally based on calibration arguments rather than making any physical connection with the underlying individual-level properties of the cell motility mechanism. In this work we provide a new link between individual-level models, which account for important cell properties such as varying cell shape and volume exclusion, and population-level partial differential equation models. We work in an exclusion process framework, considering aligned, elongated cells that may occupy more than one lattice site, in order to represent populations of agents with different sizes. Three different idealizations of the individual-level mechanism are proposed, and these are connected to three different partial differential equations, each with a different diffusion coefficient; one linear, one nonlinear and degenerate and one nonlinear and nondegenerate. We test the ability of these three models to predict the population level response of a cell spreading problem for both proliferative and nonproliferative cases. We also explore the potential of our models to predict long time travelling wave invasion rates and extend our results to two dimensional spreading and invasion. Our results show that each model can accurately predict density data for nonproliferative systems, but that only one does so for proliferative systems. Hence great care must be taken to predict density data for with varying cell shape.
Resumo:
This paper proposes a new research method, Participatory Action Design Research (PADR), for studies in the Urban Informatics domain. PADR supports Urban Informatics research in developing new technological means (e.g. using mobile and ubiquitous computing) to resolve contemporary issues or support everyday life in urban environments. The paper discusses the nature, aims and inherent methodological needs of Urban Informatics research, and proposes PADR as a method to address these needs. Situated in a socio-technical context, Urban Informatics requires a close dialogue between social and design-oriented fields of research as well as their methods. PADR combines Action Research and Design Science Research, both of which are used in Information Systems, another field with a strong socio-technical emphasis, and further adapts them to the cross-disciplinary needs and research context of Urban Informatics.
Resumo:
Despite promising benefits and advantages, there are reports of failures and low realisation of benefits in Enterprise System (ES) initiatives. Among the research on the factors that influence ES success, there is a dearth of studies on the knowledge implications of multiple end-user groups using the same ES application. An ES facilitates the work of several user groups, ranging from strategic management, management, to operational staff, all using the same system for multiple objectives. Given the fundamental characteristics of ES – integration of modules, business process views, and aspects of information transparency – it is necessary that all frequent end-users share a reasonable amount of common knowledge and integrate their knowledge to yield new knowledge. Recent literature on ES implementation highlights the importance of Knowledge Integration (KI) for implementation success. Unfortunately, the importance of KI is often overlooked and little about the role of KI in ES success is known. Many organisations do not achieve the potential benefits from their ES investment because they do not consider the need or their ability to integrate their employees’ knowledge. This study is designed to improve our understanding of the influence of KI among ES end-users on operational ES success. The three objectives of the study are: (I) to identify and validate the antecedents of KI effectiveness, (II) to investigate the impact of KI effectiveness on the goodness of individuals’ ES-knowledge base, and (III) to examine the impact of the goodness of individuals’ ES-knowledge base on the operational ES success. For this purpose, we employ the KI factors identified by Grant (1996) and an IS-impact measurement model from the work of Gable et al. (2008) to examine ES success. The study derives its findings from data gathered from six Malaysian companies in order to obtain the three-fold goal of this thesis as outlined above. The relationships between the antecedents of KI effectiveness and its consequences are tested using 188 responses to a survey representing the views of management and operational employment cohorts. Using statistical methods, we confirm three antecedents of KI effectiveness and the consequences of the antecedents on ES success are validated. The findings demonstrate a statistically positive impact of KI effectiveness of ES success, with KI effectiveness contributing to almost one-third of ES success. This research makes a number of contributions to the understanding of the influence of KI on ES success. First, based on the empirical work using a complete nomological net model, the role of KI effectiveness on ES success is evidenced. Second, the model provides a theoretical lens for a more comprehensive understanding of the impact of KI on the level of ES success. Third, restructuring the dimensions of the knowledge-based theory to fit the context of ES extends its applicability and generalisability to contemporary Information Systems. Fourth, the study develops and validates measures for the antecedents of KI effectiveness. Fifth, the study demonstrates the statistically significant positive influence of the goodness of KI on ES success. From a practical viewpoint, this study emphasises the importance of KI effectiveness as a direct antecedent of ES success. Practical lessons can be drawn from the work done in this study to empirically identify the critical factors among the antecedents of KI effectiveness that should be given attention.
Resumo:
This paper argues for a renewed focus on statistical reasoning in the beginning school years, with opportunities for children to engage in data modelling. Results are reported from the first year of a 3-year longitudinal study in which three classes of first-grade children (6-year-olds) and their teachers engaged in data modelling activities. The theme of Looking after our Environment, part of the children’s science curriculum, provided the task context. The goals for the two activities addressed here included engaging children in core components of data modelling, namely, selecting attributes, structuring and representing data, identifying variation in data, and making predictions from given data. Results include the various ways in which children represented and re represented collected data, including attribute selection, and the metarepresentational competence they displayed in doing so. The “data lenses” through which the children dealt with informal inference (variation and prediction) are also reported.
Resumo:
The Request For Proposal (RFP) with the design‐build (DB) procurement arrangement is a document in which an owner develops his requirements and conveys the project scope to DB contractors. Owners should provide an appropriate level of design in DB RFPs to adequately describe their requirements without compromising the prospects for innovation. This paper examines and compares the different levels of owner‐provided design in DB RFPs by the content analysis of 84 requests for RFPs for public DB projects advertised between 2000 and 2010 with an aggregate contract value of over $5.4 billion. A statistical analysis was also conducted in order to explore the relationship between the proportion of owner‐provided design and other project information, including project type, advertisement time, project size, contractor selection method, procurement process and contract type. The results show that the majority (64.8%) of the RFPs provide less than 10% of the owner‐provided design. The owner‐provided design proportion has a significant association with project type, project size, contractor selection method and contract type. In addition, owners are generally providing less design in recent years than hitherto. The research findings also provide owners with perspectives to determine the appropriate level of owner‐provided design in DB RFPs.
Resumo:
In this paper I consider a role for risk understanding in school science education. Grounds for this are described in terms of current sociological analyses of the contemporary world as a ‘risk society’ and recent public understanding of science studies where science and risk are concerns commonly linked within the wider community. These concerns connect with support amongst many science educators for the goal of science education for citizenship. From this perspective scientific literacy for decision making on contemporary socioscientific issues is central. I argue that in such decision making risk understanding has an important role to play. I examine some of the challenges its inclusion in school science presents to science teachers, review previous writing about risk in the science education literature and consider how knowledge about risk might be addressed in school science. I also outline the varying conceptions of risk and suggest some future research directions which would support the inclusion of risk in classroom discussions of socioscientific issues.
Resumo:
This paper reports one aspect of a study of 28 young adults (18–26 years) engaging with the uncertain (contested) science of a television news report about recent research into mobile phone health risks. The aim of the study was to examine these young people’s ‘accounts of scientific knowledge’ in this context. Seven groups of friends responded to the news report, initially in focus group discussions. Later in semi-structured interviews they elaborated their understanding of the nature of science through their explanations of the scientists’ disagreement and described their mobile phone safety risk assessments. This paper presents their accounts in terms of their views of the nature of science and their concept understanding. Discussions were audio-recorded then analysed by coding the talk in terms of issues raised, which were grouped into themes and interpreted in terms of a moderate social constructionist theoretical framing. In this context, most participants expressed a ‘common sense’ view of the nature of science, describing it as an atheoretical, technical procedure of scientists testing their personal opinions on the issue, subject to the influence of funding sponsors. The roles of theory and data interpretation were largely ignored. It is argued that the nature of science understanding is crucial to engagement with contemporary socioscientific issues, particularly the roles of argumentation, theory, data interpretation, and the distinction of science from common sense. Implications for school science relate primarily to nature of science teaching and the inclusion of socioscientific issues in school science curricula. Future research directions are considered.
Resumo:
Although the design-build (DB) system has been demonstrated to be an effective delivery method and has gained popularity worldwide, it has not gained the same popularity in the construction market of China. The objective of this study was, theretofore, to investigate the barriers to entry in the DB market. A total of 22 entry barriers were first identified through an open-ended questionnaire survey with 15 top construction professionals in the construction market of China. A broad questionnaire survey was further conducted to prioritize these entry barriers. Statistical analysis of responses shows that the most dominant barriers to entry into the DB market are, namely, lack of design expertise, lack of interest from owners, lack of suitable organization structure, lack of DB specialists, and lack of credit record system. Analysis of variance indicates that there is no difference of opinions among the respondent groups of academia, government departments, state-owned company, and private company, at the 5% significance level, on most of the barriers to entry. Finally, the underlying dimensions of barriers to entry in the DB market were investigated through factor analysis. The results indicate that there are six major underlying dimensions of entry barriers in DB market, which include, namely, the competence of design-builders, difficulty in project procurement, characteristics of DB projects, lack of support from public sectors, the competence of DB owners, and the immaturity of DB market. These findings are useful for both potential and incumbent design-builders to understand and analyze the DB market in China.