926 resultados para signal noise
Resumo:
Interpreting acoustic recordings of the natural environment is an increasingly important technique for ecologists wishing to monitor terrestrial ecosystems. Technological advances make it possible to accumulate many more recordings than can be listened to or interpreted, thereby necessitating automated assistance to identify elements in the soundscape. In this paper we examine the problem of estimating avian species richness by sampling from very long acoustic recordings. We work with data recorded under natural conditions and with all the attendant problems of undefined and unconstrained acoustic content (such as wind, rain, traffic, etc.) which can mask content of interest (in our case, bird calls). We describe 14 acoustic indices calculated at one minute resolution for the duration of a 24 hour recording. An acoustic index is a statistic that summarizes some aspect of the structure and distribution of acoustic energy and information in a recording. Some of the indices we calculate are standard (e.g. signal-to-noise ratio), some have been reported useful for the detection of bioacoustic activity (e.g. temporal and spectral entropies) and some are directed to avian sources (spectral persistence of whistles). We rank the one minute segments of a 24 hour recording in descending order according to an "acoustic richness" score which is derived from a single index or a weighted combination of two or more. We describe combinations of indices which lead to more efficient estimates of species richness than random sampling from the same recording, where efficiency is defined as total species identified for given listening effort. Using random sampling, we achieve a 53% increase in species recognized over traditional field surveys and an increase of 87% using combinations of indices to direct the sampling. We also demonstrate how combinations of the same indices can be used to detect long duration acoustic events (such as heavy rain and cicada chorus) and to construct long duration (24 h) spectrograms.
Resumo:
RNA-mediated silencing in plants can spread from cell to cell and over a long distance, and such mobile silencing has been extensively studied in the past decade. However, major questions remain as to what is the exact nature of the mobile silencing signals, how the components of the RNA-directed DNA methylation pathway are involved, and why systemic spread of silencing has only been observed for transgenes but not endogenous genes. In this review, we provide an overview of the current knowledge on mobile gene silencing in plants and present a model where systemic silencing involves long nuclear RNA transcripts that serve as a template to amplify primary siRNA signals.
Resumo:
An on-road study was conducted to evaluate a complementary tactile navigation signal on driving behaviour and eye movements for drivers with hearing loss (HL) compared to drivers with normal hearing (NH). 32 participants (16 HL and 16 NH) performed two preprogrammed navigation tasks. In one, participants received only visual information, while the other also included a vibration in the seat to guide them in the correct direction. SMI glasses were used for eye tracking, recording the point of gaze within the scene. Analysis was performed on predefined regions. A questionnaire examined participant's experience of the navigation systems. Hearing loss was associated with lower speed, higher satisfaction with the tactile signal and more glances in the rear view mirror. Additionally, tactile support led to less time spent viewing the navigation display.
Resumo:
Cyclostationary models for the diagnostic signals measured on faulty rotating machineries have proved to be successful in many laboratory tests and industrial applications. The squared envelope spectrum has been pointed out as the most efficient indicator for the assessment of second order cyclostationary symptoms of damages, which are typical, for instance, of rolling element bearing faults. In an attempt to foster the spread of rotating machinery diagnostics, the current trend in the field is to reach higher levels of automation of the condition monitoring systems. For this purpose, statistical tests for the presence of cyclostationarity have been proposed during the last years. The statistical thresholds proposed in the past for the identification of cyclostationary components have been obtained under the hypothesis of having a white noise signal when the component is healthy. This need, coupled with the non-white nature of the real signals implies the necessity of pre-whitening or filtering the signal in optimal narrow-bands, increasing the complexity of the algorithm and the risk of losing diagnostic information or introducing biases on the result. In this paper, the authors introduce an original analytical derivation of the statistical tests for cyclostationarity in the squared envelope spectrum, dropping the hypothesis of white noise from the beginning. The effect of first order and second order cyclostationary components on the distribution of the squared envelope spectrum will be quantified and the effectiveness of the newly proposed threshold verified, providing a sound theoretical basis and a practical starting point for efficient automated diagnostics of machine components such as rolling element bearings. The analytical results will be verified by means of numerical simulations and by using experimental vibration data of rolling element bearings.
Resumo:
Diagnostics of rolling element bearings have been traditionally developed for constant operating conditions, and sophisticated techniques, like Spectral Kurtosis or Envelope Analysis, have proven their effectiveness by means of experimental tests, mainly conducted in small-scale laboratory test-rigs. Algorithms have been developed for the digital signal processing of data collected at constant speed and bearing load, with a few exceptions, allowing only small fluctuations of these quantities. Owing to the spreading of condition based maintenance in many industrial fields, in the last years a need for more flexible algorithms emerged, asking for compatibility with highly variable operating conditions, such as acceleration/deceleration transients. This paper analyzes the problems related with significant speed and load variability, discussing in detail the effect that they have on bearing damage symptoms, and propose solutions to adapt existing algorithms to cope with this new challenge. In particular, the paper will i) discuss the implication of variable speed on the applicability of diagnostic techniques, ii) address quantitatively the effects of load on the characteristic frequencies of damaged bearings and iii) finally present a new approach for bearing diagnostics in variable conditions, based on envelope analysis. The research is based on experimental data obtained by using artificially damaged bearings installed on a full scale test-rig, equipped with actual train traction system and reproducing the operation on a real track, including all the environmental noise, owing to track irregularity and electrical disturbances of such a harsh application.
Resumo:
Diagnostics is based on the characterization of mechanical system condition and allows early detection of a possible fault. Signal processing is an approach widely used in diagnostics, since it allows directly characterizing the state of the system. Several types of advanced signal processing techniques have been proposed in the last decades and added to more conventional ones. Seldom, these techniques are able to consider non-stationary operations. Diagnostics of roller bearings is not an exception of this framework. In this paper, a new vibration signal processing tool, able to perform roller bearing diagnostics in whatever working condition and noise level, is developed on the basis of two data-adaptive techniques as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED), coupled by means of the mathematics related to the Hilbert transform. The effectiveness of the new signal processing tool is proven by means of experimental data measured in a test-rig that employs high power industrial size components.
Resumo:
The signal processing techniques developed for the diagnostics of mechanical components operating in stationary conditions are often not applicable or are affected by a loss of effectiveness when applied to signals measured in transient conditions. In this chapter, an original signal processing tool is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition, Minimum Entropy Deconvolution and the analytical approach of the Hilbert transform. The tool has been developed to detect localized faults on bearings of traction systems of high speed trains and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on envelope analysis or spectral kurtosis, which represent until now the landmark for bearings diagnostics.
Resumo:
The integration of large amount of wind power into a power system imposes a new challenge for the secure and economic operation of the system. It is necessary to investigate the impacts of wind power generation on the dynamic behavior of the power system concerned. This paper investigates the impacts of large amount of wind power on small signal stability and the corresponding control strategies to mitigate the negative effects. The concepts of different types of wind turbine generators (WTGs) and the principles of the grid-connected structures of wind power generation systems are first briefly introduced. Then, the state-of-the-art of the studies on the impacts of WTGs on small signal stability as well as potential problems to be studied are clarified. Finally, the control strategies on WTGs to enhance power system damping characteristics are presented.
Resumo:
Development of design guides to estimate the difference in speech interference level due to road traffic noise between a reference position and balcony position or façade position is explored. A previously established and validated theoretical model incorporating direct, specular and diffuse reflection paths is used to create a database of results across a large number of scenarios. Nine balcony types with variable acoustic treatments are assessed to provide acoustic design guidance on optimised selection of balcony acoustic treatments based on location and street type. In total, the results database contains 9720 scenarios on which multivariate linear regression is conducted in order to derive an appropriate design guide equation. The best fit regression derived is a multivariable linear equation including modified exponential equations on each of nine deciding variables, (1) diffraction path difference, (2) ratio of total specular energy to direct energy, (3) distance loss between reference position and receiver position, (4) distance from source to balcony façade, (5) height of balcony floor above street, (6) balcony depth, (7) height of opposite buildings, (8) diffusion coefficient of buildings, and; (9) balcony average absorption. Overall, the regression correlation coefficient, R2, is 0.89 with 95% confidence standard error of ±3.4 dB.
Resumo:
With the ever-increasing penetration level of wind power, the impacts of wind power on the power system are becoming more and more significant. Hence, it is necessary to systematically examine its impacts on the small signal stability and transient stability in order to find out countermeasures. As such, a comprehensive study is carried out to compare the dynamic performances of power system respectively with three widely-used power generators. First, the dynamic models are described for three types of wind power generators, i. e. the squirrel cage induction generator (SCIG), doubly fed induction generator (DFIG) and permanent magnet generator (PMG). Then, the impacts of these wind power generators on the small signal stability and transient stability are compared with that of a substituted synchronous generator (SG) in the WSCC three-machine nine-bus system by the eigenvalue analysis and dynamic time-domain simulations. Simulation results show that the impacts of different wind power generators are different under small and large disturbances.
Resumo:
Purpose. To establish a simple and rapid analytical method, based on direct insertion/electron ionization-mass spectrometry (DI/EI-MS), for measuring free cholesterol in tears from humans and rabbits. Methods. A stable-isotope dilution protocol employing DI/EI-MS in selected ion monitoring mode was developed and validated. It was used to quantify the free cholesterol content in human and rabbit tear extracts. Tears were collected from adult humans (n = 15) and rabbits (n = 10) and lipids extracted. Results. Screening, full-scan (m/z 40-600) DI/EI-MS analysis of crude tear extracts showed that diagnostic ions located in the mass range m/z 350 to 400 were those derived from free cholesterol, with no contribution from cholesterol esters. DI/EI-MS data acquired using selected ion monitoring (SIM) were analyzed for the abundance ratios of diagnostic ions with their stable isotope-labeled analogues arising from the D6-cholesterol internal standard. Standard curves of good linearity were produced and an on-probe limit of detection of 3 ng (at 3:1 signal to noise) and limit of quantification of 8 ng (at 10:1 signal to noise). The concentration of free cholesterol in human tears was 15 ± 6 μg/g, which was higher than in rabbit tears (10 ± 5 μg/g). Conclusions. A stable-isotope dilution DI/EI-SIM method for free cholesterol quantification without prior chromatographic separation was established. Using this method demonstrated that humans have higher free cholesterol levels in their tears than rabbits. This is in agreement with previous reports. This paper provides a rapid and reliable method to measure free cholesterol in small-volume clinical samples. © 2013 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
The aim of this small-scale study was to measure, analyse and compare levels of acoustic noise, in a nine-bedded general intensive care unit (ICU). Measurements were undertaken using the Norsonic 116 sound level meter recording noise levels in the internationally agreed ‘A’ weighted scale. Noise level data were obtained and recorded at 5 min over 3 consecutive days. Results of noise level analysis indicated that mean noise levels within this clinical area was 56·42 dB(A), with acute spikes reaching 80 dB(A). The quietest noise level attained was that of 50 dB(A) during sporadic intervals throughout the 24-h period. Parametric testing using analysis of variance found a positive relationship (p ≤ 0·001) between the nursing shifts and the day of the week. However, Scheffe multiple range testing showed significant differences between the morning shift, and the afternoon and night shifts combined (p ≤ 0·05). There was no statistical difference between the afternoon and night shifts (p ≥ 0·05). While the results of this study may seem self-evident in many respects, what it has highlighted is that the problem of excessive noise exposure within the ICU continues to go unabated. More concerning is that the prolonged effects of excessive noise exposure on patients and staff alike can have deleterious effect on the health and well-being of these individuals.
Resumo:
Aims and objectives. This study was undertaken to measure and analyse levels of acoustic noise in a General Surgical Ward. Method. Measurements were undertaken using the Norsonic 116 sound level meter (SLM) recording noise levels in the internationally agreed ‘A’ weighted scale. Noise level data and observational data as to the number of staff present were obtained and recorded at 5-min intervals over three consecutive days. Results. Results of noise level analysis indicated that mean noise level within this clinical area was 42.28 dB with acute spikes reaching 70 dB(A). The lowest noise level attained was that of 36 dB(A) during the period midnight to 7 a.m. Non-parametric testing, using Spearman's Rho (two-tailed), found a positive relationship between the number of staff present and the level of noise recorded, indicating that the presence of hospital personnel strongly influences the level of noise within this area. Relevance to clinical practice. Whilst the results of this may seem self-evident in many respects the problems of excessive noise production and the exposure to it for patients, hospital personnel and relatives alike continues unabated. What must be of concern is the psychophysiological effects excessive noise exposure has on individuals, for example, decreased wound healing, sleep deprivation and cardiovascular stimulation.
Resumo:
This small-scale study was undertaken to assess what knowledge nursing staff from a General Intensive Care Unit held with regard to noise exposure. To assess knowledge a self-administered multiple-choice questionnaire was used. Rigorous peer-review insured content validity. This study produced poor results in terms of the knowledge nurses held with regard to noise related issues in particular the psychophysiological effects and current legislation concerning its safe exposure. Non-parametric testing, using Kruskal–Wallis found no significant difference between nursing grades, however, descriptive analysis demonstrated that the staff nurse grade (D and E) performed better overall. Whilst the results of this study may seem self-evident in some respects, it is the problems of exposure to excessive noise levels for both patients and hospital personnel, which are clearly not understood. The effects noise exposure has on individuals for example decreased wound healing; sleep deprivation and cardiovascular stimulation must be of concern especially in terms of patient care but more so for nursing staff especially the effects noise levels can have on cognitive task performance.