575 resultados para rotary mowers
Resumo:
The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.
Resumo:
This paper details a method of determining the uncertainty of dimensional measurement for a three dimensional coordinate measurement machine. An experimental procedure was developed to compare three dimensional coordinate measurements with calibrated reference points. The reference standard used to calibrate these reference points was a fringe counting interferometer with the multilateration technique employed to establish three dimensional coordinates. This is an extension of the established technique of comparing measured lengths with calibrated lengths. Specifically a distributed coordinate measurement device was tested which consisted of a network of Rotary-Laser Automatic Theodolites (R-LATs), this system is known commercially as indoor GPS (iGPS). The method was found to be practical and able to establish that the expanded uncertainty of the basic iGPS system was approximately 1 mm at a 95% confidence level. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
The dominant model of atmospheric circulation posits that hot air rises, creating horizontal winds. A second major driver has recently been proposed by Makarieva and Gorshkov in their biotic pump theory (BPT), which suggests that evapotranspiration from natural closed-canopy forests causes intense condensation, and hence winds from ocean to land. Critics of the BPT argue that air movement to fill the partial vacuum caused by condensation is always isotropic, and therefore causes no net air movement (Bunyard, 2015, hdl:11232/397). This paper explores the physics of water condensation under mild atmospheric conditions, within a purpose-designed square-section 4.8 m-tall closed-system structure. Two enclosed vertical columns are connected at top and bottom by two horizontal tunnels, around which 19.5 m**3 of atmospheric air can circulate freely, allowing rotary airflows in either direction. This air can be cooled and/or warmed by refrigeration pipes and a heating mat, and changes in airflow, temperature, humidity and barometric pressure measured in real time. The study investigates whether the "hot-air-rises" or an implosive condensation model can better explain the results of more than 100 experiments. The data show a highly significant correlation (R2 >0.96, p value <0.001) between observed airflows and partial pressure changes from condensation. While the kinetic energy of the refrigerated air falls short of that required in bringing about observed airflows by a factor of at least 30, less than a tenth of the potential kinetic energy from condensation is shown to be sufficient. The assumption that condensation of water vapour is always isotropic is therefore incorrect. Condensation can be anisotropic, and in the laboratory does cause sustained airflow.
Resumo:
The continuous sediment record from Lake El'gygytgyn in the northeastern Eurasian Arctic spans the last 3.6 Ma and for much of this time permafrost dynamics and lake level changes have likely played a crucial role for sediment delivery to the lake. Changes in the ground-ice hydrochemical composition (d18O, dD, pH, electrical conductivity, Na+, Mg2+, Ca2+, K+, HCO3-, Cl-, SO4-) of a 141 m long permafrost record from the western crater plain are examined to reconstruct repeated periods of freeze and thaw at the lake edge. Stable water isotope and major ion records of ground ice in the permafrost reflect both a synsedimentary palaeo-precipitation signal preserved in the near-surface permafrost (0.0-9.1 m core depth) and a post-depositional record of thawing and refreezing in deeper layers of the core (9.1-141.0 m core depth). These lake marginal permafrost dynamics were controlled by lake level changes that episodically flooded the surfaces and induced thaw in the underlying frozen ground. During times of lake level fall these layers froze over again. At least three cycles of freeze and thaw are identified and the hydrochemical data point to a vertical and horizontal talik refreezing through time. Past permafrost thaw and freeze may have destabilised the basin slopes of Lake El'gygytgyn and this has probably promoted the release of mass movements from the lake edge to the deeper basin as known from frequently occurring turbidite layers in the lake sediment column.
Resumo:
A recently developed novel biomass fuel pellet, the Q’ Pellet, offers significant improvements over conventional white pellets, with characteristics comparable to those of coal. The Q’ Pellet was initially created at bench scale using a proprietary die and punch design, in which the biomass was torrefied in-situ¬ and then compressed. To bring the benefits of the Q’ Pellet to a commercial level, it must be capable of being produced in a continuous process at a competitive cost. A prototype machine was previously constructed in a first effort to assess continuous processing of the Q’ Pellet. The prototype torrefied biomass in a separate, ex-situ reactor and transported it into a rotary compression stage. Upon evaluation, parts of the prototype were found to be unsuccessful and required a redesign of the material transport method as well as the compression mechanism. A process was developed in which material was torrefied ex-situ and extruded in a pre-compression stage. The extruded biomass overcame multiple handling issues that had been experienced with un-densified biomass, facilitating efficient material transport. Biomass was extruded directly into a novel re-designed pelletizing die, which incorporated a removable cap, ejection pin and a die spring to accommodate a repeatable continuous process. Although after several uses the die required manual intervention due to minor design and manufacturing quality limitations, the system clearly demonstrated the capability of producing the Q’ Pellet in a continuous process. Q’ Pellets produced by the pre-compression method and pelletized in the re-designed die had an average dry basis gross calorific value of 22.04 MJ/kg, pellet durability index of 99.86% and dried to 6.2% of its initial mass following 24 hours submerged in water. This compares well with literature results of 21.29 MJ/kg, 100% pellet durability index and <5% mass increase in a water submersion test. These results indicate that the methods developed herein are capable of producing Q’ Pellets in a continuous process with fuel properties competitive with coal.
Resumo:
El objetivo del artículo es analizar algunos aspectos de los orígenes de la “política cultural” estadounidense en Argentina. La atención se concentrará en el pasaje desde las declaraciones del presidente Hoover, que contribuyeron a favorecer un clima útil y propicio a la intensificación de los intercambios, a los primeros pasos concretos realizados en el periodo de la presidencia de Roosevelt. Se tratará, en particular, de individualizar las características de la cooperación establecida entre organismos estadounidenses y argentinos para favorecer la proyección cultural estadounidense en el país y el intercambio cultural entre Estados Unidos y Argentina, donde se iba intensificando la difusión de un sentimiento anti-imperialista, y que era entonces objetivo de formas de propaganda particularmente agresivas por parte de los regímenes totalitarios.
Resumo:
Bioenergy is one of many contributors to reducing the use of fossil fuels in order to mitigate climate change by decreasing CO2-emissions, and the potential for biofuels are large. The wood fuel pellets are a refined biofuel made of sawdust, which is dried and compressed to achieve improved fuel and transportation properties. In 2007 the amount of wood fuel pellets used for heating purposes in Sweden was 1715000 tons. The aims of this work was: to examine the moisture content and emission of monoterpenes during the drying and pelletising steps of the pellets production (Paper I); to investigate how the recirculation of drying gases affects the energy efficiency of rotary dryers and how the energy efficiency is related to the capacity of the dryer. (Paper II); to analyse the causes of the problems encountered by household end-users of pellets and investigate whether an improved pellet quality standard could reduce these problems (Paper III); to investigate how the energy consumption of the pelletising machine and chosen pellet quality parameters were affected using an increased amount of rapeseed cake in wood fuel pellets (Paper IV); and to identify gaps of knowledge about wood fuel pellet technology and needs for further research on quality, environmental and health aspects throughout the wood fuel pellet chain, from sawdust to heat. (Paper V).
Resumo:
O tratamento endodôntico é um procedimento comum em medicina dentária, tradicionalmente é realizado em múltiplas sessões, com medicação intracanalar entre sessões, para reduzir ou eliminar os microrganismos e os seus produtos antes da obturação, mas o conceito de tratamento numa sessão não é novo e nos últimos anos tem sido mais incorporado na prática clínica. O uso de técnicas endodônticas e equipamentos contemporâneos têm revolucionado os procedimentos endodônticos de modo a que seja possível a realização do tratamento endodôntico em uma única sessão, não só por aumentarem a taxa de sucesso do tratamento endodôntico, mas também por reduzirem o tempo necessário para o tratamento. A realização do tratamento numa única sessão tem vindo a ganhar aceitação como sendo o melhor tratamento na maioria dos casos, sendo que alguns endodontistas acreditam que existem poucos casos que não possam ser tratados com sucesso em uma única sessão. Dada a tendência para uma sociedade cada vez com um ritmo mais acelerado, este tipo de tratamento tem-se tornado o tratamento de eleição e habitualmente o tipo de tratamento preferido pelos pacientes Este trabalho tem como objetivo fazer uma revisão sobre o debate da realização do tratamento endodôntico em uma ou múltiplas sessões, avaliando todas as vantagens e desvantagens da realização do tratamento endodôntico numa sessão, comparativamente ao tratamento endodôntico em múltiplas sessões, bem como as suas indicações e contraindicações, de modo a proporcionar ao médico dentista uma informação atualizada desta abordagem clínica.
Resumo:
Introduction - No validated protocol exists for the measurement of the prism fusion ranges. Many studies report on how fusional vergence ranges can be measured using different techniques (rotary prism, prism bar, loose prisms and synoptophore) and stimuli, leading to different ranges being reported in the literature. Repeatability of the different methods available and the equivalence between them it is also important. In addition, some studies available do not agree in what order fusional vergence should be measured to provide the essential information on which to base clinical judgements on compensation of deviations. When performing fusional vergence testing the most commonly accepted clinical technique is to first measure negative fusional vergence followed by a measurement of positive fusional vergence to avoid affecting the value of vergence recovery because of excessive stimulation of convergence. Von Noorden recommend using vertical fusion amplitudes in between horizontal amplitudes (base-out, base-up, base-in, and base down) to prevent vergence adaptation. Others place the base of the prism in the direction opposite to that used to measure the deviation to increase the vergence demand. Objectives - The purpose of this review is to assess and compare the accuracy of tests for measurement of fusional vergence. Secondary objectives are to investigate sources of heterogeneity of diagnostic accuracy including: age; variation in method of assessment; study design; study size; type of strabismus (convergent, divergent, vertical, cycle); severity of strabismus (constant/intermittent/latent).
Resumo:
Introdução: A extrusão apical detritos (EAD) consequência indesejável da instrumentação canalar pode ser associada a dor/edema, podendo atrasar a cicatrização periapical. O nosso trabalho teve como objectivo avaliar e quantificar a EAD em canais instrumentados por sistemas de instrumentação rotatória contínua e reciprocante. Materiais e Métodos: 80 dentes monocanalares sem tratamento endodôntico prévio foram aleatoriamente divididos em 4 grupos (n=20): One Shape® Protaper® NEXT, Hyflex® EDM e WaveOne® Gold. Um tubo de Eppendorf (TdE) foi pesado antecipadamente numa balança analítica de precisão e com um dente inserido foi montado num dispositivo modificado, similar ao método descrito por Myers & Montgomery. Os canais foram instrumentados e irrigados com água destilada. Os dentes instrumentados foram removidos dos TdE e estes preenchidos com água destilada até perfazer 1,5ml, incubados a 70ºC durante cinco dias sendo pesados novamente, calculando a diferença entre o peso inicial e final determinando o peso dos detritos. Os dados foram analisados estatisticamente utilizando o IBM SPSS Statistics 22, considerando α=0,05. Efetuaram-se testes Kruskal-Wallis e post-hoc com ajustamento do ρ-value pelo método Dunn-Bonferroni. Resultados: Houve EAD em todas as técnicas de instrumentação. A análise estatística mostrou haver diferenças significativas na EAD entre as técnicas utilizadas (α=0,002). Entre as técnicas WaveOne® Gold e One Shape® (α=0,003), WaveOne® Gold e Protaper® NEXT (α=0,023) e WaveOne® Gold e Hyflex® EDM (α=0,028). Conclusões: A técnica One Shape® apresentou menor EAD e a técnica WaveOne® Gold com movimento reciprocante constitui maior fator de risco tendo apresentado maior EAD. Os resultados deste estudo indicam que os profissionais devem estar cientes para a EAD que pode ocorrer com cada instrumento, o que poderá servir de base para a selecção de um instrumento particular. Implicações clínicas: A escolha do sistema de instrumentação canalar influencia a extrusão de detritos. Fontes de financiamento: Agradecimentos as empresas; Micro-Mega, França, COLTÉNE e Dentsply Maillefer, Suíça.
Resumo:
Flapping Wing Aerial Vehicles (FWAVs) have the capability to combine the benefits of both fixed wing vehicles and rotary vehicles. However, flight time is limited due to limited on-board energy storage capacity. For most Unmanned Aerial Vehicle (UAV) operators, frequent recharging of the batteries is not ideal due to lack of nearby electrical outlets. This imposes serious limitations on FWAV flights. The approach taken to extend the flight time of UAVs was to integrate photovoltaic solar cells onto different structures of the vehicle to harvest and use energy from the sun. Integration of the solar cells can greatly improve the energy capacity of an UAV; however, this integration does effect the performance of the UAV and especially FWAVs. The integration of solar cells affects the ability of the vehicle to produce the aerodynamic forces necessary to maintain flight. This PhD dissertation characterizes the effects of solar cell integration on the performance of a FWAV. Robo Raven, a recently developed FWAV, is used as the platform for this work. An additive manufacturing technique was developed to integrate photovoltaic solar cells into the wing and tail structures of the vehicle. An approach to characterizing the effects of solar cell integration to the wings, tail, and body of the UAV is also described. This approach includes measurement of aerodynamic forces generated by the vehicle and measurements of the wing shape during the flapping cycle using Digital Image Correlation. Various changes to wing, body, and tail design are investigated and changes in performance for each design are measured. The electrical performance from the solar cells is also characterized. A new multifunctional performance model was formulated that describes how integration of solar cells influences the flight performance. Aerodynamic models were developed to describe effects of solar cell integration force production and performance of the FWAV. Thus, performance changes can be predicted depending on changes in design. Sensing capabilities of the solar cells were also discovered and correlated to the deformation of the wing. This demonstrated that the solar cells were capable of: (1) Lightweight and flexible structure to generate aerodynamic forces, (2) Energy harvesting to extend operational time and autonomy, (3) Sensing of an aerodynamic force associated with wing deformation. Finally, different flexible photovoltaic materials with higher efficiencies are investigated, which enable the multifunctional wings to provide enough solar power to keep the FWAV aloft without batteries as long as there is enough sunlight to power the vehicle.
Resumo:
The oil activity in the Rio Grande do Norte State (RN) is a permanent threat to coastal ecosystems, particularly mangroves, with the possibility of oil spills. In this context, the objective of this study was to evaluate the potential resistance of the mangrove environment of a possible spill. Were selected and isolated microorganisms degrading oil by the technique of enrichment cultures and formation of a bacterial consortium. The kinetic study of the consortium was held in rotary incubator shaken at 150 rpm and 30° C. Samples were taken at intervals of 4 hours for analysis of cell concentration and surface tension. The biodegradation was monitored using two methods of respirometry: manometric (OxiTop-C ®) and conductivimetry, where the biodegradation of oil was estimated indirectly by oxygen consumption and CO2 production, respectively. Furthermore, it was used a full 2² factorial design with triplicate at central point to the runs that used the conductivimetric methodology.. The technique of enrichment cultures allowed to obtain thirteen bacterial strains. Kinetic study of the consortium, we can showed the absence of the lag phase, reaching a maximum cell concentration of 2.55 g / L at 16 h of cultivation and a reduction on surface tension. When we adopted the methodology of OxiTop-C was detected a band indicating biodegradability (1% oil v/v), however when we used the conductivimetry methodology did not observe any band that would indicate effective biodegradation. By monitoring a process of biodegradation is necessary to observe the methodology will be adopted to evaluate the biodegradation process, since for the same conditions adopted different methodologies can produce different results. The oil-degrading isolates from soils of the mangrove estuary Potengi / RN are largely to be used in bioremediation strategies of these places, in the case of a possible oil spill, or it can be used in the treatment of waste oil generated in saline environments, since they are optimized the conditions of the tests so that the efficiency of biodegradation reach the minimum level suggested by the standarts