742 resultados para raccomandazione e-learning privacy tecnica rule-based recommender suggerimento


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

<p>[EN]Nowadays companies demand graduates able to work in multidisciplinary and collaborative projects. Hence, new educational methods are needed in order to support a more advanced society, and progress towards a higher quality of life and sustainability. The University of the Basque Country belongs to the European Higher Education Area, which was created as a result of the Bologna process to ensure the connection and quality of European national educational systems. In this framework, this paper proposes an innovative teaching methodology developed for the &quot;Robotics&quot; subject course that belongs to the syllabus of the B.Sc. degree in Industrial Electronics and Automation Engineering. We present an innovative methodology for Robotics learning based on collaborative projects, aimed at responding to the demands of a multidisciplinary and multilingual society. </p>

Relevância:

40.00% 40.00%

Publicador:

Resumo:

<p>[EN]One of the main issues of the current education system is the lack of student motivation. This aspect together with the permanent change that the Information and Communications Technologies involve represents a major challenge for the teacher: to continuously update contents and to keep awake the student&rsquo;s interest. A tremendously useful tool in classrooms consists on the integration of projects with participative and collaborative dynamics, where the teacher acts mainly as a guidance to the student activity instead of being a mere knowledge and evaluation transmitter. As a specific example of project based learning, the EDUROVs project consists on building an economic underwater robot using low cost materials, but allowing the integration and programming of many accessories and sensors with minimum budget using opensource hardware and software. </p>

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In many application domains data can be naturally represented as graphs. When the application of analytical solutions for a given problem is unfeasible, machine learning techniques could be a viable way to solve the problem. Classical machine learning techniques are defined for data represented in a vectorial form. Recently some of them have been extended to deal directly with structured data. Among those techniques, kernel methods have shown promising results both from the computational complexity and the predictive performance point of view. Kernel methods allow to avoid an explicit mapping in a vectorial form relying on kernel functions, which informally are functions calculating a similarity measure between two entities. However, the definition of good kernels for graphs is a challenging problem because of the difficulty to find a good tradeoff between computational complexity and expressiveness. Another problem we face is learning on data streams, where a potentially unbounded sequence of data is generated by some sources. There are three main contributions in this thesis. The first contribution is the definition of a new family of kernels for graphs based on Directed Acyclic Graphs (DAGs). We analyzed two kernels from this family, achieving state-of-the-art results from both the computational and the classification point of view on real-world datasets. The second contribution consists in making the application of learning algorithms for streams of graphs feasible. Moreover,we defined a principled way for the memory management. The third contribution is the application of machine learning techniques for structured data to non-coding RNA function prediction. In this setting, the secondary structure is thought to carry relevant information. However, existing methods considering the secondary structure have prohibitively high computational complexity. We propose to apply kernel methods on this domain, obtaining state-of-the-art results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate a recently proposed model for decision learning in a population of spiking neurons where synaptic plasticity is modulated by a population signal in addition to reward feedback. For the basic model, binary population decision making based on spike/no-spike coding, a detailed computational analysis is given about how learning performance depends on population size and task complexity. Next, we extend the basic model to n-ary decision making and show that it can also be used in conjunction with other population codes such as rate or even latency coding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Learning by reinforcement is important in shaping animal behavior, and in particular in behavioral decision making. Such decision making is likely to involve the integration of many synaptic events in space and time. However, using a single reinforcement signal to modulate synaptic plasticity, as suggested in classical reinforcement learning algorithms, a twofold problem arises. Different synapses will have contributed differently to the behavioral decision, and even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike-time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward, but also by a population feedback signal. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference (TD) based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task, the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second task involves an action sequence which is itself extended in time and reward is only delivered at the last action, as it is the case in any type of board-game. The third task is the inspection game that has been studied in neuroeconomics, where an inspector tries to prevent a worker from shirking. Applying our algorithm to this game yields a learning behavior which is consistent with behavioral data from humans and monkeys, revealing themselves properties of a mixed Nash equilibrium. The examples show that our neuronal implementation of reward based learning copes with delayed and stochastic reward delivery, and also with the learning of mixed strategies in two-opponent games.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Learning by reinforcement is important in shaping animal behavior. But behavioral decision making is likely to involve the integration of many synaptic events in space and time. So in using a single reinforcement signal to modulate synaptic plasticity a twofold problem arises. Different synapses will have contributed differently to the behavioral decision and, even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward but by a population feedback signal as well. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second one involves an action sequence which is itself extended in time and reward is only delivered at the last action, as is the case in any type of board-game. The third is the inspection game that has been studied in neuroeconomics. It only has a mixed Nash equilibrium and exemplifies that the model also copes with stochastic reward delivery and the learning of mixed strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This publication offers concrete suggestions for implementing an integrative and learning-oriented approach to agricultural extension with the goal of fostering sustainable development. It targets governmental and non-governmental organisations, development agencies, and extension staff working in the field of rural development. The book looks into the conditions and trends that influence extension today, and outlines new challenges and necessary adaptations. It offers a basic reflection on the goals, the criteria for success and the form of a state-of-the-art approach to extension. The core of the book consists of a presentation of Learning for Sustainability (LforS), an example of an integrative, learning-oriented approach that is based on three crucial elements: stakeholder dialogue, knowledge management, and organizational development. Awareness raising and capacity building, social mobilization, and monitoring & evaluation are additional building blocks. The structure and organisation of the LforS approach as well as a selection of appropriate methods and tools are presented. The authors also address key aspects of developing and managing a learning-oriented extension approach. The book illustrates how LforS can be implemented by presenting two case studies, one from Madagascar and one from Mongolia. It addresses conceptual questions and at the same time it is practice-oriented. In contrast to other extension approaches, LforS does not limit its focus to production-related aspects and the development of value chains: it also addresses livelihood issues in a broad sense. With its focus on learning processes LforS seeks to create a better understanding of the links between different spheres and different levels of decision-making; it also seeks to foster integration of the different actorsâ perspectives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Humans and animals face decision tasks in an uncertain multi-agent environment where an agent's strategy may change in time due to the co-adaptation of others strategies. The neuronal substrate and the computational algorithms underlying such adaptive decision making, however, is largely unknown. We propose a population coding model of spiking neurons with a policy gradient procedure that successfully acquires optimal strategies for classical game-theoretical tasks. The suggested population reinforcement learning reproduces data from human behavioral experiments for the blackjack and the inspector game. It performs optimally according to a pure (deterministic) and mixed (stochastic) Nash equilibrium, respectively. In contrast, temporal-difference(TD)-learning, covariance-learning, and basic reinforcement learning fail to perform optimally for the stochastic strategy. Spike-based population reinforcement learning, shown to follow the stochastic reward gradient, is therefore a viable candidate to explain automated decision learning of a Nash equilibrium in two-player games.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reported research project involved studying how teaching science using demonstrations, inquiry-based cooperative learning groups, or a combination of the two methods affected sixth grade studentsâ understanding of air pressure and density. Three different groups of students were each taught the two units using different teaching methods. Group one learned about the topics through both demonstrations and inquirybased cooperative learning, whereas group two only viewed demonstrations, and group three only participated in inquiry-based learning in cooperative learning groups. The study was designed to answer the following two questions: 1. Which teaching strategy works best for supporting student understanding of air pressure and density: demonstrations, inquirybased labs in cooperative learning groups, or a combination of the two? 2. And what effect does the time spent engaging in a particular learning experience (demonstrations or labs) have on student learning? Overall, the data did not provide sufficient evidence that one method of learning was more effective than the others. The results also suggested that spending more time on a unit does not necessarily equate to a better understanding of the concepts by the students. Implications for science instruction are discussed.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Given the complex structure of the brain, how can synaptic plasticity explain the learning and forgetting of associations when these are continuously changing? We address this question by studying different reinforcement learning rules in a multilayer network in order to reproduce monkey behavior in a visuomotor association task. Our model can only reproduce the learning performance of the monkey if the synaptic modifications depend on the pre- and postsynaptic activity, and if the intrinsic level of stochasticity is low. This favored learning rule is based on reward modulated Hebbian synaptic plasticity and shows the interesting feature that the learning performance does not substantially degrade when adding layers to the network, even for a complex problem.