901 resultados para probabilistic roadmap


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of object tracking in a wireless multimedia sensor network (we mainly focus on the camera component in this work). The vast majority of current object tracking techniques, either centralised or distributed, assume unlimited energy, meaning these techniques don't translate well when applied within the constraints of low-power distributed systems. In this paper we develop and analyse a highly-scalable, distributed strategy to object tracking in wireless camera networks with limited resources. In the proposed system, cameras transmit descriptions of objects to a subset of neighbours, determined using a predictive forwarding strategy. The received descriptions are then matched at the next camera on the objects path using a probability maximisation process with locally generated descriptions. We show, via simulation, that our predictive forwarding and probabilistic matching strategy can significantly reduce the number of object-misses, ID-switches and ID-losses; it can also reduce the number of required transmissions over a simple broadcast scenario by up to 67%. We show that our system performs well under realistic assumptions about matching objects appearance using colour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teacher quality is recognised as a lynchpin for education reforms internationally, and both Federal and State governments in Australia have turned their attention to teacher education institutions: the starting point for preparing quality teachers. Changes to policy and shifts in expectations impact on Faculties of Education, despite the fact that little is known about what makes a quality teacher preparation program effective. New accountability measures, mandated Professional Standards, and proposals to test all graduates before registration, mean that teacher preparation programs need capacity for flexibility and responsiveness. The risk is that undergraduate degree programs can become ‘patchwork quilts’ with traces of the old and new stitched together, sometimes at the expense of coherence and integrity. This paper provides a roadmap used by one large Faculty of Education in Queensland for reforming and reconceptualising the curriculum for a 4-year undergraduate program, in response to new demands from government and the professional bodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a framework for performing real-time recursive estimation of landmarks’ visual appearance. Imaging data in its original high dimensional space is probabilistically mapped to a compressed low dimensional space through the definition of likelihood functions. The likelihoods are subsequently fused with prior information using a Bayesian update. This process produces a probabilistic estimate of the low dimensional representation of the landmark visual appearance. The overall filtering provides information complementary to the conventional position estimates which is used to enhance data association. In addition to robotics observations, the filter integrates human observations in the appearance estimates. The appearance tracks as computed by the filter allow landmark classification. The set of labels involved in the classification task is thought of as an observation space where human observations are made by selecting a label. The low dimensional appearance estimates returned by the filter allow for low cost communication in low bandwidth sensor networks. Deployment of the filter in such a network is demonstrated in an outdoor mapping application involving a human operator, a ground and an air vehicle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a robust place recognition algorithm for mobile robots. The framework proposed combines nonlinear dimensionality reduction, nonlinear regression under noise, and variational Bayesian learning to create consistent probabilistic representations of places from images. These generative models are learnt from a few images and used for multi-class place recognition where classification is computed from a set of feature-vectors. Recognition can be performed in near real-time and accounts for complexity such as changes in illumination, occlusions and blurring. The algorithm was tested with a mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images respectively. This framework has several potential applications such as map building, autonomous navigation, search-rescue tasks and context recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present the application of a non-linear dimensionality reduction technique for the learning and probabilistic classification of hyperspectral image. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. It gives much greater information content per pixel on the image than a normal colour image. This should greatly help with the autonomous identification of natural and manmade objects in unfamiliar terrains for robotic vehicles. However, the large information content of such data makes interpretation of hyperspectral images time-consuming and userintensive. We propose the use of Isomap, a non-linear manifold learning technique combined with Expectation Maximisation in graphical probabilistic models for learning and classification. Isomap is used to find the underlying manifold of the training data. This low dimensional representation of the hyperspectral data facilitates the learning of a Gaussian Mixture Model representation, whose joint probability distributions can be calculated offline. The learnt model is then applied to the hyperspectral image at runtime and data classification can be performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the research focuses in the integer least squares problem is the decorrelation technique to reduce the number of integer parameter search candidates and improve the efficiency of the integer parameter search method. It remains as a challenging issue for determining carrier phase ambiguities and plays a critical role in the future of GNSS high precise positioning area. Currently, there are three main decorrelation techniques being employed: the integer Gaussian decorrelation, the Lenstra–Lenstra–Lovász (LLL) algorithm and the inverse integer Cholesky decorrelation (IICD) method. Although the performance of these three state-of-the-art methods have been proved and demonstrated, there is still a potential for further improvements. To measure the performance of decorrelation techniques, the condition number is usually used as the criterion. Additionally, the number of grid points in the search space can be directly utilized as a performance measure as it denotes the size of search space. However, a smaller initial volume of the search ellipsoid does not always represent a smaller number of candidates. This research has proposed a modified inverse integer Cholesky decorrelation (MIICD) method which improves the decorrelation performance over the other three techniques. The decorrelation performance of these methods was evaluated based on the condition number of the decorrelation matrix, the number of search candidates and the initial volume of search space. Additionally, the success rate of decorrelated ambiguities was calculated for all different methods to investigate the performance of ambiguity validation. The performance of different decorrelation methods was tested and compared using both simulation and real data. The simulation experiment scenarios employ the isotropic probabilistic model using a predetermined eigenvalue and without any geometry or weighting system constraints. MIICD method outperformed other three methods with conditioning improvements over LAMBDA method by 78.33% and 81.67% without and with eigenvalue constraint respectively. The real data experiment scenarios involve both the single constellation system case and dual constellations system case. Experimental results demonstrate that by comparing with LAMBDA, MIICD method can significantly improve the efficiency of reducing the condition number by 78.65% and 97.78% in the case of single constellation and dual constellations respectively. It also shows improvements in the number of search candidate points by 98.92% and 100% in single constellation case and dual constellations case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a novel probabilistic approach to incorporating odometric information into appearance-based SLAM systems, without performing metric map construction or calculating relative feature geometry. The proposed system, dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM), represents location as a probability distribution along a trajectory, and represents appearance continuously over the trajectory rather than at discrete locations. The distribution is evaluated using a Rao-Blackwellised particle filter, which weights particles based on local appearance and odometric similarity and explicitly models both the likelihood of revisiting previous locations and visiting new locations. A modified resampling scheme counters particle deprivation and allows loop closure updates to be performed in constant time regardless of map size. We compare the performance of CAT-SLAM to FAB-MAP (an appearance-only SLAM algorithm) in an outdoor environment, demonstrating a threefold increase in the number of correct loop closures detected by CAT-SLAM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proposed transmission smart grids will use a digital platform for the automation of substations operating at voltage levels of 110 kV and above. The IEC 61850 series of standards, released in parts over the last ten years, provide a specification for substation communications networks and systems. These standards, along with IEEE Std 1588-2008 Precision Time Protocol version 2 (PTPv2) for precision timing, are recommended by the both IEC Smart Grid Strategy Group and the NIST Framework and Roadmap for Smart Grid Interoperability Standards for substation automation. IEC 61850-8-1 and IEC 61850-9-2 provide an inter-operable solution to support multi-vendor digital process bus solutions, allowing for the removal of potentially lethal voltages and damaging currents from substation control rooms, a reduction in the amount of cabling required in substations, and facilitates the adoption of non-conventional instrument transformers (NCITs). IEC 61850, PTPv2 and Ethernet are three complementary protocol families that together define the future of sampled value digital process connections for smart substation automation. This paper describes a specific test and evaluation system that uses real time simulation, protection relays, PTPv2 time clocks and artificial network impairment that is being used to investigate technical impediments to the adoption of SV process bus systems by transmission utilities. Knowing the limits of a digital process bus, especially when sampled values and NCITs are included, will enable utilities to make informed decisions regarding the adoption of this technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses a current research project building new understandings and knowledge relevant to R&D funding strategies in Australia. Building on a retrospective analysis of R&D trends and industry outcomes, an industry roadmap will be developed to inform R&D policies more attuned to future industry needs to improve research investment effectiveness. The project will also include analysis of research team formation and management (involving end users from public and private sectors together with research and knowledge institutions), and dissemination of outcomes and uptake in the Australian building and construction industry. The project will build on previous research extending open innovation system theory and network analysis and procurement, focused on R&D. Through the application of dynamic capabilities and strategic foresighting theory, an industry roadmap for future research investment will be developed, providing a stronger foundation for more targeted policy recommendations. This research will contribute to more effective construction processes in the future through more targeted research funding and more effective research partnerships between industry and researchers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a lead project currently underway through Australia’s Sustainable Built Environment National Research Centre, evaluating impacts, diffusion mechanisms and uptake of R&D in the Australian building and construction industry. Building on a retrospective analysis of R&D trends and industry outcomes, a future-focused industry roadmap will be developed to inform R&D policies more attuned to future industry needs to improve investment effectiveness. In particular, this research will evaluate national R&D efforts to develop, test and implement advanced digital modelling technologies into the design/construction/asset management cycle. This research will build new understandings and knowledge relevant to R&D funding strategies, research team formation and management (with involvement from public and private sectors, and research and knowledge institutions), dissemination of outcomes and uptake. This is critical due to the disaggregated nature of the industry, intense competition, limited R&D investment; and new challenges (e.g. digital modelling, integrated project delivery, and the demand for packaged services). The evaluation of leading Australian and international efforts to integrate advanced digital modelling technologies into the design/construction/asset management cycle will be undertaken as one of three case studies. Employing the recently released Australian Guidelines for Digital Modelling developed with buildingSMART (International Alliance for Interoperability) and the Australian Institute of Architects, technical and business benefits across the supply chain will be highlighted as drivers for more integrated R&D efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The world we live in is well labeled for the benefit of humans but to date robots have made little use of this resource. In this paper we describe a system that allows robots to read and interpret visible text and use it to understand the content of the scene. We use a generative probabilistic model that explains spotted text in terms of arbitrary search terms. This allows the robot to understand the underlying function of the scene it is looking at, such as whether it is a bank or a restaurant. We describe the text spotting engine at the heart of our system that is able to detect and parse wild text in images, and the generative model, and present results from images obtained with a robot in a busy city setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different international plant protection organisations advocate different schemes for conducting pest risk assessments. Most of these schemes use structured questionnaire in which experts are asked to score several items using an ordinal scale. The scores are then combined using a range of procedures, such as simple arithmetic mean, weighted averages, multiplication of scores, and cumulative sums. The most useful schemes will correctly identify harmful pests and identify ones that are not. As the quality of a pest risk assessment can depend on the characteristics of the scoring system used by the risk assessors (i.e., on the number of points of the scale and on the method used for combining the component scores), it is important to assess and compare the performance of different scoring systems. In this article, we proposed a new method for assessing scoring systems. Its principle is to simulate virtual data using a stochastic model and, then, to estimate sensitivity and specificity values from these data for different scoring systems. The interest of our approach was illustrated in a case study where several scoring systems were compared. Data for this analysis were generated using a probabilistic model describing the pest introduction process. The generated data were then used to simulate the outcome of scoring systems and to assess the accuracy of the decisions about positive and negative introduction. The results showed that ordinal scales with at most 5 or 6 points were sufficient and that the multiplication-based scoring systems performed better than their sum-based counterparts. The proposed method could be used in the future to assess a great diversity of scoring systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performance comparisons between File Signatures and Inverted Files for text retrieval have previously shown several significant shortcomings of file signatures relative to inverted files. The inverted file approach underpins most state-of-the-art search engine algorithms, such as Language and Probabilistic models. It has been widely accepted that traditional file signatures are inferior alternatives to inverted files. This paper describes TopSig, a new approach to the construction of file signatures. Many advances in semantic hashing and dimensionality reduction have been made in recent times, but these were not so far linked to general purpose, signature file based, search engines. This paper introduces a different signature file approach that builds upon and extends these recent advances. We are able to demonstrate significant improvements in the performance of signature file based indexing and retrieval, performance that is comparable to that of state of the art inverted file based systems, including Language models and BM25. These findings suggest that file signatures offer a viable alternative to inverted files in suitable settings and positions the file signatures model in the class of Vector Space retrieval models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This important work describes recent theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Chapters survey research on pattern classification with binary-output networks, including a discussion of the relevance of the Vapnik Chervonenkis dimension, and of estimates of the dimension for several neural network models. In addition, Anthony and Bartlett develop a model of classification by real-output networks, and demonstrate the usefulness of classification with a "large margin." The authors explain the role of scale-sensitive versions of the Vapnik Chervonenkis dimension in large margin classification, and in real prediction. Key chapters also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient, constructive learning algorithms. The book is self-contained and accessible to researchers and graduate students in computer science, engineering, and mathematics