935 resultados para plasmons, dark field microscopy, gold particles, fluorescence enhancement


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unique proprieties exhibited by nanoscale particles compared to their macro size counterparts allow for the creation of novel neural activity manipula-tion procedures. In this sense, gold nanoparticles (AuNPs) can be used to stimu-late the electrical activity of neuron by converting light into heat. During this dissertation, AuNPs are synthesized by the citrate reduction method, resulting in a hydrodynamic diameter of approximately 16 nm and an absorbance peak of 530 nm. A system to control a 532 nm laser and measure the temperature variation was custom built from scratch specifically for this project. Temperature is then measured with recourse to a thermocouple and through changes in impedance. The built system had in consideration the necessities pre-sented by in vivo tests. Trials were performed by measuring the temperature rise of colloidal AuNP solutions, having the temperature variation reached a maximum of ap-proximately 18 ºC relative to control trials; successfully showing that light is ef-fectively transduced into heat when AuNPs are present. This novel approach enables an alternative to optogenetics, which require the animal to be genetically modified in order to allow neuron stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the interaction between hair filaments and formulations or peptides is of utmost importance in fields like cosmetic research. Keratin intermediate filaments structure is not fully described, limiting the molecular dynamics (MD) studies in this field although its high potential to improve the area. We developed a computational model of a truncated protofibril, simulated its behavior in alcoholic based formulations and with one peptide. The simulations showed a strong interaction between the benzyl alcohol molecules of the formulations and the model, leading to the disorganization of the keratin chains, which regress with the removal of the alcohol molecules. This behavior can explain the increase of peptide uptake in hair shafts evidenced in fluorescence microscopy pictures. The model developed is valid to computationally reproduce the interaction between hair and alcoholic formulations and provide a robust base for new MD studies about hair properties. It is shown that the MD simulations can improve hair cosmetic research, improving the uptake of a compound of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, Ba0.8Sr0.2TiO3 (BST)/ITO structures were grown on glass substrate and laser assisted annealing (LAA) was performed to promote the crystallization of BST. Atomic force microscopy and X-ray diffraction studies confirm the crack free and polycrystalline perovskite phase of BST. White light controlled resistive switching (RS) effect in Au/BST/ITO device is investigated. The device displays the electroforming-free bipolar RS characteristics and are explained by the modulationof the width and height of barrier at the BST/ITO interface via ferroelectric polarization. Moreover, the RS effect is signifi- cantly improved under white light illumination compared to that in the dark. The enhanced RS and photovoltaic effects are explained by considering depolarization field and charge distribution at the interface. The devices exhibit stable retention characteristics with low currents (mA), which make them attractive for non volatile memory devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A therapeutic deep eutectic system (THEDES) is here defined as a deep eutectic solvent (DES) having an active pharmaceutical ingredient (API) as one of the components. In this work, THEDESs are proposed as enhanced transporters and delivery vehicles for bioactive molecules. THEDESs based on choline chloride (ChCl) or menthol conjugated with three different APIs, namely acetylsalicylic acid (AA), benzoic acid (BA) and phenylacetic acid (PA), were synthesized and characterized for thermal behaviour, structural features, dissolution rate and antibacterial activity. Differential scanning calorimetry and polarized optical microscopy showed that ChCl:PA (1:1), ChCl:AA (1:1), menthol:AA (3:1), menthol:BA (3:1), menthol:PA (2:1) and menthol:PA (3:1) were liquid at room temperature. Dissolution studies in PBS led to increased dissolution rates for the APIs when in the form of THEDES, compared to the API alone. The increase in dissolution rate was particularly noticeable for menthol-based THEDES. Antibacterial activity was assessed using both Gram-positive and Gram-negative model organisms. The results show that all the THEDESs retain the antibacterial activity of the API. Overall, our results highlight the great potential of THEDES as dissolution enhancers in the development of novel and more effective drug delivery systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence in situ hybridization (FISH) is based on the use of fluorescent staining dyes, however, the signal intensity of the images obtained by microscopy is seldom quantified with accuracy by the researcher. The development of innovative digital image processing programs and tools has been trying to overcome this problem, however, the determination of fluorescent intensity in microscopy images still has issues due to the lack of precision in the results and the complexity of existing software. This work presents FISHji, a set of new ImageJ methods for automated quantification of fluorescence in images obtained by epifluorescence microscopy. To validate the methods, results obtained by FISHji were compared with results obtained by flow cytometry. The mean correlation between FISHji and flow cytometry was high and significant, showing that the imaging methods are able to accurately assess the signal intensity of fluorescence images. FISHji are available for non-commercial use at http://paginas.fe.up.pt/nazevedo/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IDENTIFICACIÓN DEL PROBLEMA DE ESTUDIO. Las sustancias orgánicas solubles en agua no biodegradables tales como ciertos herbicidas, colorantes industriales y metabolitos de fármacos de uso masivo son una de las principales fuentes de contaminación en aguas subterráneas de zonas agrícolas y en efluentes industriales y domésticos. Las reacciones fotocatalizadas por irradiación UV-visible y sensitizadores orgánicos e inorgánicos son uno de los métodos más económicos y convenientes para la descomposición de contaminantes en subproductos inocuos y/o biodegradables. En muchas aplicaciones es deseable un alto grado de especificidad, efectividad y velocidad de degradación de un dado agente contaminante que se encuentra presente en una mezcla compleja de sustancias orgánicas en solución. En particular son altamente deseables sistemas nano/micro -particulados que formen suspensiones acuosas estables debido a que estas permiten una fácil aplicación y una eficaz acción descontaminante en grandes volúmenes de fluidos. HIPÓTESIS Y PLANTEO DE LOS OBJETIVOS. El objetivo general de este proyecto es desarrollar sistemas nano/micro particulados formados por polímeros de impresión molecular (PIMs) y foto-sensibilizadores (FS). Un PIMs es un polímero especialmente sintetizado para que sea capaz de reconocer específicamente un analito (molécula plantilla) determinado. La actividad de unión específica de los PIMs en conjunto con la capacidad fotocatalizadora de los sensibilizadores pueden ser usadas para lograr la fotodescomposición específica de moléculas “plantilla” (en este caso un dado contaminante) en soluciones conteniendo mezclas complejas de sustancias orgánicas. MATERIALES Y MÉTODOS A UTILIZAR. Se utilizaran técnicas de polimerización en mini-emulsión para sintetizar los sistemas nano/micro PIM-FS para buscar la degradación de ciertos compuestos de interés. Para caracterizar eficiencias, mecanismos y especificidad de foto-degradación en dichos sistemas se utilizan diversas técnicas espectroscópicas (estacionarias y resueltas en el tiempo) y de cromatografía (HPLC y GC). Así mismo, para medir directamente distribuciones de afinidades de unión y eficiencia de foto-degradación se utilizaran técnicas de fluorescencia de molécula/partícula individual. Estas determinaciones permitirán obtener resultados importantes al momento de analizar los factores que afectan la eficiencia de foto-degradación (nano/micro escala), tales como cantidad y ubicación de foto- sensibilizadores en las matrices poliméricas y eficiencia de unión de la plantilla y los productos de degradación al PIM. RESULTADOS ESPERADOS. Los estudios propuestos apuntan a un mejor entendimiento de procesos foto-iniciados en entornos nano/micro-particulados para aplicar dichos conocimientos al diseño de sistemas optimizados para la foto-destrucción selectiva de contaminantes acuosos de relevancia social; tales como herbicidas, residuos industriales, metabolitos de fármacos de uso masivo, etc. IMPORTANCIA DEL PROYECTO. Los sistemas nano/micro-particulados PIM-FS que se propone desarrollar en este proyecto se presentan como candidatos ideales para tratamientos específicos de efluentes industriales y domésticos en los cuales se desea lograr la degradación selectiva de compuestos orgánicos. Los conocimientos adquiridos serán indispensables para construir una plataforma versátil de sistemas foto-catalíticos específicos para la degradación de diversos contaminantes orgánicos de interés social. En lo referente a la formación de recursos humanos, el proyecto propuesto contribuirá en forma directa a la formación de 3 estudiantes de postgrado y 2 estudiantes de grado. En las capacidades institucionales se contribuirá al acondicionamiento del Laboratorio para Microscopía Óptica Avanzada (LMOA) en el Dpto. de Química de la UNRC y al montaje de un sistema de microscopio de fluorescencia que permitirá la aplicación de técnicas avanzadas de espectroscopia de fluorescencia de molecula individual. Water-soluble organic molecules such as certain non-biodegradable herbicides, industrial dyes and metabolites of widespread use drugs are a major source of pollution in groundwater from agricultural areas and in industrial and domestic effluents. Photo-catalytic reactions by UV-visible irradiation and organic sensitizers are one of the most economical and convenient methods for the decomposition of pollutants into harmless byproducts. In many applications it is highly desirable a high degree of specificity, effectiveness and speed of degradation of specific pollutants present in a complex mixture. In particular nano/micro-particles systems that form stable aqueous suspensions are highly desirable because they allow for easy application and effective decontamination of large volumes of fluids. Herein we propose the development of nano/micro particles composed by molecularly imprinted polymers (MIP) and photo-sensitizers (PS). The specific binding of MIP and the photo-catalytic ability of the sensitizers are used to achieve the photo-decomposition of specific "template" molecules in complex mixtures. Mini-emulsion polymerization techniques will be used to synthesize nano/micro MIP-FS systems. Spectroscopy (steady-state and time resolved) and chromatography (GC and HPLC) will be used to characterize efficiency, mechanisms and specificity of photo-degradation in these systems. In addition single molecule/particle fluorescence spectroscopy techniques will be used to directly measure distributions of binding affinities and photo-degradation efficiency in individual particles. The proposed studies point to a more detailed understanding of the factors affecting the photo-degradation efficiency in nano/micro-particles and to apply that knowledge in the design of optimized systems for photo-selective destruction of socially relevant aqueous pollutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of two cultivars of sweet sorghum (Brandes and Rio) grown on a Dark Red Latosol (Latossolo Roxo, Barra Bonita, SP.) were collected at intervals of 20 days during their life cycle and the contents of micronutrients were determined by routine procedures. Usually the physiological stages in which the rate of absorption was higher were not the same for both varieties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmission electon microscopy has been employed for the rapid detection of mycoplasma in sera and cell cultures. High speed centrifugation of sera or low speed centrifugation of cell debris, followed by negative staining of the resuspended pellet, detected mycoplasma contamination more frequently than a culture method followed by direct fluorescence (DAPI), which was used as a control procedure. The appearance of the mycoplasma cell border and content gives some information about particle viability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence imaging for detection of non-muscle-invasive bladder cancer is based on the selective production and accumulation of fluorescing porphyrins-mainly, protoporphyrin IX-in cancerous tissues after the instillation of Hexvix®. Although the sensitivity of this procedure is very good, its specificity is somewhat limited due to fluorescence false-positive sites. Consequently, magnification cystoscopy has been investigated in order to discriminate false from true fluorescence positive findings. Both white-light and fluorescence modes are possible with the magnification cystoscope, allowing observation of the bladder wall with magnification ranging between 30× for standard observation and 650×. The optical zooming setup allows adjusting the magnification continuously in situ. In the high-magnification (HM) regime, the smallest diameter of the field of view is 600 microns and the resolution is 2.5 microns when in contact with the bladder wall. With this cystoscope, we characterized the superficial vascularization of the fluorescing sites in order to discriminate cancerous from noncancerous tissues. This procedure allowed us to establish a classification based on observed vascular patterns. Seventy-two patients subject to Hexvix® fluorescence cystoscopy were included in the study. Comparison of HM cystoscopy classification with histopathology results confirmed 32?33 (97%) cancerous biopsies and rejected 17?20 (85%) noncancerous lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 1984, DNA tests based on the highly repeated subtelomeric sequences of Plasmodium falciparum (rep 20) have been frequently used in malaria diagnosis. Rep 20 is very specific for this parasite, and is made of 21 bp units, organized in repeated blocks with direct and inverted orientation. Based in this particular organization, we selected a unique consensus oligonucleotide (pf-21) to drive a PCR reaction coupled to hybridization to non-radioactive labeled probes. The pf-21 unique oligo PCR (pf-21-I) assay produced DNA amplification fingerprints when was applied on purified P. falciparum DNA samples (Brazil and Colombia), as well as in patient's blood samples from a large area of Venezuela. The performance of the Pf-21-I assay was compared against Giemsa stained thick blood smears from samples collected at a malaria endemic area of the Bolívar State, Venezuela, at the field station of Malariología in Tumeremo. Coupled to non-radioactive hybridization the pf-21-I performed better than the traditional microscopic method with a r=1.7:1. In the case of mixed infections the r value of P. falciparum detection increased to 2.5:1. The increased diagnostic sensitivity of the test produced with this homologous oligonucleotide could provide an alternative to the epidemiological diagnosis of P. falciparum being currently used in Venezuela endemic areas, where low parasitemia levels and asymptomatic malaria are frequent. In addition, the DNA fingerprint could be tested in molecular population studies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing experimental evidence indicates that, in addition to the physical virion components, the non-structural proteins of hepatitis C virus (HCV) are intimately involved in orchestrating morphogenesis. Since it is dispensable for HCV RNA replication, the non-structural viral protein NS2 is suggested to play a central role in HCV particle assembly. However, despite genetic evidences, we have almost no understanding about NS2 protein-protein interactions and their role in the production of infectious particles. Here, we used co-immunoprecipitation and/or fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy analyses to study the interactions between NS2 and the viroporin p7 and the HCV glycoprotein E2. In addition, we used alanine scanning insertion mutagenesis as well as other mutations in the context of an infectious virus to investigate the functional role of NS2 in HCV assembly. Finally, the subcellular localization of NS2 and several mutants was analyzed by confocal microscopy. Our data demonstrate molecular interactions between NS2 and p7 and E2. Furthermore, we show that, in the context of an infectious virus, NS2 accumulates over time in endoplasmic reticulum-derived dotted structures and colocalizes with both the envelope glycoproteins and components of the replication complex in close proximity to the HCV core protein and lipid droplets, a location that has been shown to be essential for virus assembly. We show that NS2 transmembrane region is crucial for both E2 interaction and subcellular localization. Moreover, specific mutations in core, envelope proteins, p7 and NS5A reported to abolish viral assembly changed the subcellular localization of NS2 protein. Together, these observations indicate that NS2 protein attracts the envelope proteins at the assembly site and it crosstalks with non-structural proteins for virus assembly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sylvatic Triatoma infestans DM (dark morph) population detected in the Bolivian Chaco was characterized and compared with various domestic ones. The degree of differentiation of DM was clearly within the T. infestans intra-specific level. Nevertheless marked chromatic and morphometric differences as well as differences in antennal pattern, chromosome banding and randomly amplified polymorphic DNA support the hypothesis of a distinct population. Continuous exchange of insects between wild and domestic habitats seems unlikely in the Chaco.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: The pre-treatment of tumour neovessels by low-level photodynamic therapy (PDT) improves the distribution of concomitantly administered systemic chemotherapy. The mechanism by which PDT permeabilizes the tumour vessel wall is only partially known. We have recently shown that leukocyte-endothelial cell interaction is essential for photodynamic drug delivery to normal tissue. The present study investigates whether PDT enhances drug delivery in malignant mesothelioma and whether it involves comparable mechanisms of actions. METHODS: Human mesothelioma xenografts (H-meso-1) were grown in the dorsal skinfold chambers of 28 nude mice. By intravital microscopy, the rolling and recruitment of leukocytes were assessed in tumour vessels following PDT (Visudyne(®) 400 μg/kg, fluence rate 200 mW/cm(2) and fluence 60 J/cm(2)) using intravital microscopy. Likewise, the distribution of fluorescently labelled macromolecular dextran (FITC-dextran, MW 2000 kDa) was determined after PDT. Study groups included no PDT, PDT, PDT plus a functionally blocking anti-pan-selectin antibody cocktail and PDT plus isotype control antibody. RESULTS: PDT significantly enhanced the extravascular accumulation of FITC-dextran in mesothelioma xenografts, but not in normal tissue. PDT significantly increased leukocyte-endothelial cell interaction in tumour. While PDT-induced leukocyte recruitment was significantly blunted by the anti-pan-selectin antibodies in the tumour xenograft, this manipulation did not affect the PDT-induced extravasation of FITC-dextran. CONCLUSIONS: Low-level PDT pre-treatment selectively enhances the uptake of systemically circulating macromolecular drugs in malignant mesothelioma, but not in normal tissue. Leukocyte-endothelial cell interaction is not required for PDT-induced drug delivery to malignant mesothelioma.