992 resultados para network centrality
Resumo:
The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by ?70 in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.
Resumo:
Background. Several types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various organisms have been constructed, that have provided a variety of insights into metabolism and regulation. Here, we seek to exploit the reaction-based networks of three organisms for comparative genomics. We use concepts from spectral graph theory to systematically determine how differences in basic metabolism of organisms are reflected at the systems level and in the overall topological structures of their metabolic networks. Methodology/Principal Findings. Metabolome-based reaction networks of Mycobacterium tuberculosis, Mycobacterium leprae and Escherichia coli have been constructed based on the KEGG LIGAND database, followed by graph spectral analysis of the network to identify hubs as well as the sub-clustering of reactions. The shortest and alternate paths in the reaction networks have also been examined. Sub-cluster profiling demonstrates that reactions of the mycolic acid pathway in mycobacteria form a tightly connected sub-cluster. Identification of hubs reveals reactions involving glutamate to be central to mycobacterial metabolism, and pyruvate to be at the centre of the E. coli metabolome. The analysis of shortest paths between reactions has revealed several paths that are shorter than well established pathways. Conclusions. We conclude that severe downsizing of the leprae genome has not significantly altered the global structure of its reaction network but has reduced the total number of alternate paths between its reactions while keeping the shortest paths between them intact. The hubs in the mycobacterial networks that are absent in the human metabolome can be explored as potential drug targets. This work demonstrates the usefulness of constructing metabolome based networks of organisms and the feasibility of their analyses through graph spectral methods. The insights obtained from such studies provide a broad overview of the similarities and differences between organisms, taking comparative genomics studies to a higher dimension.
Resumo:
The dissertation discusses the conceptions of place and landscape amongst Nenets living on the island of Kolguyev or being of Kolguyev descent. The conceptions are examined through the everyday life of the community, oral recollections and narration that unfold meanings related to the island. The research material has been collected in ethnographic fieldwork in 2000 2005. The duration of individual fieldworks varies from two weeks to three months and their total duration is nearly six months. The fieldwork has been conducted both on the island and in the city of Nar yan-Mar. The main methods have been participant observation and recorded and unrecorded informal interviews. In addition to the field work data, archive materials, travel accounts, and other historical texts by outsiders about Kolguyev or the Nenets living in the European side of Russia have been used as a research material. The analysis is based on the idea of the place as a meeting point of the physical features, experiences in them and collective narration about them. The concept sense of place is used to describe the interaction of these three. Lived space manifests individual s or collective sense of place. The places form different kinds of networks of meanings which are called landscapes. Hot spots are places where different meanings accumulate. Furthermore, the material is analysed using the concepts of Tale World and Story Realm by Katherine Young. The Tale World is a realm created during the Story Realm, i.e. the event of narrations. The Tale Worlds are true as such but become evaluated in the Story Realm. The Tale Worlds are seen to arise both from the physical features of a place and from oral tradition, but at the same time these worlds give meanings to the place. The Tale Worlds are one of the central ingredients for the sense of place. One of the most central hot spots in Kolguyev is the arok harbour, where most of the themes of the pre-Soviet Tale Worlds are placed: trade and interaction with the Russians, rituals of the popular religion and arrival of the first Nenets to the island. arok is also part of the landscape of the coast where the meetings of Nenets and the other(s) are generally connected. Furthermore, arok is connected to the network of amans graves but also more generally to the landscape of collective sacred and sacrificial places. Another hot spot is the population centre of Bugrino which unfolds through the evaluations of the Tale Worlds. It also is the centre of the everyday life of the community studied. The Tale Worlds of the radiant past fastens on the population centre which is described through the negative models within the genre of litany. Sacred places, that represent the possibility to meet the Otherworld or mark places were encounters with the Otherworld have taken place, generate many kinds of landscapes in the island. They fasten on the graves of the amans, sirtya tradition, and to collective sacred places with their associations. The networks are not closed systems but are given meanings and new associations continuously in narration and recollection. They form multi-level and significant landscapes which reflect the fastening of the Kolguyev Nenets in the tundra of the island. In the research material the holy places and the popular religiousness are emphasised which is one of the most significant research results. It can be seen to reflect collective resistance and the questioning of the atheistic propaganda of the Soviet years. The narration and the recollection often refer also to the discourse of the anti-religious propaganda or use its strategies. The centrality of the holy places is also based on the tenacity of the religious Tale Worlds and sense of place and to the collective significance of the religion in general.
Resumo:
A neural network approach for solving the two-dimensional assignment problem is proposed. The design of the neural network is discussed and simulation results are presented. The neural network obtains 10-15% lower cost placements on the examples considered, than the adjacent pairwise exchange method.
Resumo:
We consider the problem of tracking an intruder in a plane region by using a wireless sensor network comprising motes equipped with passive infrared (PIR) sensors deployed over the region. An input-output model for the PIR sensor and a method to estimate the angular speed of the target from the sensor output are proposed. With the measurement model so obtained, we study the centralized and decentralized tracking performance using the extended Kalman filter.
Resumo:
Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error pe(0 <= p(e) < 0.5). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small p(e) should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low p(e) and high p(e) regimes. For the low p(e) regime, convolutional codes with good distance properties show good performance. For the high p(e) regime, convolutional codes that have a good slope ( the minimum normalized cycle weight) are seen to be good. We derive a lower bound on the slope of any rate b/c convolutional code with a certain degree.
Resumo:
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the �Single Network Adaptive Critic (SNAC)� is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.
Resumo:
An adaptive optimization algorithm using backpropogation neural network model for dynamic identification is developed. The algorithm is applied to maximize the cellular productivity of a continuous culture of baker's yeast. The robustness of the algorithm is demonstrated in determining and maintaining the optimal dilution rate of the continuous bioreactor in presence of disturbances in environmental conditions and microbial culture characteristics. The simulation results show that a significant reduction in time required to reach optimal operating levels can be achieved using neural network model compared with the traditional dynamic linear input-output model. The extension of the algorithm for multivariable adaptive optimization of continuous bioreactor is briefly discussed.
Resumo:
Beavers are often found to be in conflict with human interests by creating nuisances like building dams on flowing water (leading to flooding), blocking irrigation canals, cutting down timbers, etc. At the same time they contribute to raising water tables, increased vegetation, etc. Consequently, maintaining an optimal beaver population is beneficial. Because of their diffusion externality (due to migratory nature), strategies based on lumped parameter models are often ineffective. Using a distributed parameter model for beaver population that accounts for their spatial and temporal behavior, an optimal control (trapping) strategy is presented in this paper that leads to a desired distribution of the animal density in a region in the long run. The optimal control solution presented, imbeds the solution for a large number of initial conditions (i.e., it has a feedback form), which is otherwise nontrivial to obtain. The solution obtained can be used in real-time by a nonexpert in control theory since it involves only using the neural networks trained offline. Proper orthogonal decomposition-based basis function design followed by their use in a Galerkin projection has been incorporated in the solution process as a model reduction technique. Optimal solutions are obtained through a "single network adaptive critic" (SNAC) neural-network architecture.
Resumo:
The importance of long-range prediction of rainfall pattern for devising and planning agricultural strategies cannot be overemphasized. However, the prediction of rainfall pattern remains a difficult problem and the desired level of accuracy has not been reached. The conventional methods for prediction of rainfall use either dynamical or statistical modelling. In this article we report the results of a new modelling technique using artificial neural networks. Artificial neural networks are especially useful where the dynamical processes and their interrelations for a given phenomenon are not known with sufficient accuracy. Since conventional neural networks were found to be unsuitable for simulating and predicting rainfall patterns, a generalized structure of a neural network was then explored and found to provide consistent prediction (hindcast) of all-India annual mean rainfall with good accuracy. Performance and consistency of this network are evaluated and compared with those of other (conventional) neural networks. It is shown that the generalized network can make consistently good prediction of annual mean rainfall. Immediate application and potential of such a prediction system are discussed.
Resumo:
Diabetes is a long-term disease during which the body's production and use of insulin are impaired, causing glucose concentration level to increase in the bloodstream. Regulating blood glucose levels as close to normal as possible leads to a substantial decrease in long-term complications of diabetes. In this paper, an intelligent online feedback-treatment strategy is presented for the control of blood glucose levels in diabetic patients using single network adaptive critic (SNAC) neural networks (which is based on nonlinear optimal control theory). A recently developed mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system has been revised and considered for synthesizing the neural network for feedback control. The idea is to replicate the function of pancreatic insulin, i.e. to have a fairly continuous measurement of blood glucose and a situation-dependent insulin injection to the body using an external device. Detailed studies are carried out to analyze the effectiveness of this adaptive critic-based feedback medication strategy. A comparison study with linear quadratic regulator (LQR) theory shows that the proposed nonlinear approach offers some important advantages such as quicker response, avoidance of hypoglycemia problems, etc. Robustness of the proposed approach is also demonstrated from a large number of simulations considering random initial conditions and parametric uncertainties. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.
Monte Carlo simulation of network formation based on structural fragments in epoxy-anhydride systems
Resumo:
A method combining the Monte Carlo technique and the simple fragment approach has been developed for simulating network formation in amine-catalysed epoxy-anhydride systems. The method affords a detailed insight into the nature and composition of the network, showing the distribution of various fragments. It has been used to characterize the network formation in the reaction of the diglycidyl ester of isophthalic acid with hexahydrophthalic anhydride, catalysed by benzyldimethylamine. Pre-gel properties like number and weight distributions and average molecular weights have been calculated as a function of epoxy conversion, leading to a prediction of the gel-point conversion. Analysis of the simulated network further yields other characteristic properties such as concentration of crosslink points, distribution and concentration of elastically active chains, average molecular weight between crosslinks, sol content and mass fraction of pendent chains. A comparison has been made of the properties obtained through simulation with those predicted by the fragment approach alone, which, however, gives only average properties. The Monte Carlo simulation results clearly show that loops and other cyclic structures occur in the gel. This may account for the differences observed between the results of the simulation and the fragment model in the post-gel phase. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The crystal structure of tetrakis(cytosine)copper(II) perchlorate dihydrate has been determined. All the hydrogen atoms were obtained from Fourier-difference synthesis. The geometry around. copper is a bicapped octahedron (4 + 2 + 2*). The adjacent cytosine rings are oriented head-to-tail with respect to each other and are roughly at right angles to the co-ordination plane. The exocyclic oxo groups form an interligand, intracomplex hydrogen-bonding network above and below the co-ordination plane with the exocyclic amino groups of alternate cytosine bases. The EPR and electronic spectra are consistent with the retention of the solid-state structure in solution. The steric effect of the C(2)=O group of cytosine is offset by the presence of the intracomplex hydrogen-bonding network. The trend in Ei values of Cu-II-Cu-I couples for 1.4 complexes of cytosine, cytodine, pyridine, 2-methylpyridine and N-methylimidazole suggests that both steric effects and pi-delocalization in imidazole and pyridine ligands and the steric effect of C(2)=O in pyrimidine ligands are important in stabilising Cu-I relative to Cu-II.
Resumo:
This study aims to determine optimal locations of dual trailing-edge flaps and blade stiffness to achieve minimum hub vibration levels in a helicopter, with low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. Using the aeroelastic analysis, it is found that the objective functions are highly nonlinear and polynomial response surface approximations cannot describe the objectives adequately. A neural network is then used for approximating the objective functions for optimization. Pareto-optimal points minimizing both helicopter vibration and flap power ale obtained using the response surface and neural network metamodels. The two metamodels give useful improved designs resulting in about 27% reduction in hub vibration and about 45% reduction in flap power. However, the design obtained using response surface is less sensitive to small perturbations in the design variables.