937 resultados para multiple linear regression models
Resumo:
Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally.
Resumo:
Multiple linear regression is used to diagnose the signal of the 11-yr solar cycle in zonal-mean zonal wind and temperature in the 40-yr ECMWF Re-Analysis (ERA-40) dataset. The results of previous studies are extended to 2008 using data from ECMWF operational analyses. This analysis confirms that the solar signal found in previous studies is distinct from that of volcanic aerosol forcing resulting from the eruptions of El Chichón and Mount Pinatubo, but it highlights the potential for confusion of the solar signal and lower-stratospheric temperature trends. A correction to an error that is present in previous results of Crooks and Gray, stemming from the use of a single daily analysis field rather than monthly averaged data, is also presented.
Resumo:
The recent global economic crisis is often associated with the development and pricing of mortgage-backed securities (i.e. MBSs) and underlying products (i.e. sub-prime mortgages). This work uses a rich database of MBS issues and represents the first attempt to price commercial MBSs (i.e. CMBSs) in the European market. Our results are consistent with research carried out in the US market and we find that bond-, mortgage-, real estate-related and multinational characteristics show different degrees of significance in explaining European CMBS spreads at issuance. Multiple linear regression analysis using a databank of CMBSs issued between 1997 and 2007 indicates a strong relationship with bond-related factors, followed by real estate and mortgage market conditions. We also find that multinational factors are significant, with country of issuance, collateral location and access to more liquid markets all being important in explaining the cost of secured funding for real estate companies. As floater coupon tranches tend to be riskier and exhibit higher spreads, we also estimate a model using this sub-set of data and results hold, hence reinforcing our findings. Finally, we estimate our model for both tranches A and B and find that real estate factors become relatively more important for the riskier investment products.
Resumo:
The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment, utilizing the Matthews Correlation Coefficient (MCC) and Binding-site Distance Test (BDT) metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall’s τ, Spearman’s ρ and Pearson’s r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC) when Receiver Operator Characteristic (ROC) analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%), and one of the top manual groups (FN293) tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site prediction quality, in the absence of experimental data.
Resumo:
Total ozone trends are typically studied using linear regression models that assume a first-order autoregression of the residuals [so-called AR(1) models]. We consider total ozone time series over 60°S–60°N from 1979 to 2005 and show that most latitude bands exhibit long-range correlated (LRC) behavior, meaning that ozone autocorrelation functions decay by a power law rather than exponentially as in AR(1). At such latitudes the uncertainties of total ozone trends are greater than those obtained from AR(1) models and the expected time required to detect ozone recovery correspondingly longer. We find no evidence of LRC behavior in southern middle-and high-subpolar latitudes (45°–60°S), where the long-term ozone decline attributable to anthropogenic chlorine is the greatest. We thus confirm an earlier prediction based on an AR(1) analysis that this region (especially the highest latitudes, and especially the South Atlantic) is the optimal location for the detection of ozone recovery, with a statistically significant ozone increase attributable to chlorine likely to be detectable by the end of the next decade. In northern middle and high latitudes, on the other hand, there is clear evidence of LRC behavior. This increases the uncertainties on the long-term trend attributable to anthropogenic chlorine by about a factor of 1.5 and lengthens the expected time to detect ozone recovery by a similar amount (from ∼2030 to ∼2045). If the long-term changes in ozone are instead fit by a piecewise-linear trend rather than by stratospheric chlorine loading, then the strong decrease of northern middle- and high-latitude ozone during the first half of the 1990s and its subsequent increase in the second half of the 1990s projects more strongly on the trend and makes a smaller contribution to the noise. This both increases the trend and weakens the LRC behavior at these latitudes, to the extent that ozone recovery (according to this model, and in the sense of a statistically significant ozone increase) is already on the verge of being detected. The implications of this rather controversial interpretation are discussed.
Resumo:
Low variability of crop production from year to year is desirable for many reasons, including reduced income risk and stability of supplies. Therefore, it is important to understand the nature of yield variability, whether it is changing through time, and how it varies between crops and regions. Previous studies have shown that national crop yield variability has changed in the past, with the direction and magnitude dependent on crop type and location. Whilst such studies acknowledge the importance of climate variability in determining yield variability, it has been assumed that its magnitude and its effect on crop production have not changed through time and, hence, that changes to yield variability have been due to non-climatic factors. We address this assumption by jointly examining yield and climate variability for three major crops (rice, wheat and maize) over the past 50 years. National yield time series and growing season temperature and precipitation were de-trended and related using multiple linear regression. Yield variability changed significantly in half of the crop–country combinations examined. For several crop–country combinations, changes in yield variability were related to changes in climate variability.
Resumo:
We present a method for deriving the radiative effects of absorbing aerosols in cloudy scenes from satellite retrievals only. We use data of 2005–2007 from various passive sensors aboard satellites of the “A-Train” constellation. The study area is restricted to the tropical- and subtropical Atlantic Ocean. To identify the dependence of the local planetary albedo in cloudy scenes on cloud liquid water path and aerosol optical depth (AOD), we perform a multiple linear regression. The OMI UV-Aerosolindex serves as an indicator for absorbing-aerosol presence. In our method, the aerosol influences the local planetary albedo through direct- (scattering and absorption) and indirect (Twomey) aerosol effects. We find an increase of the local planetary albedo (LPA) with increasing AOD of mostly scattering aerosol and a decrease of the LPA with increasing AOD of mostly absorbing aerosol. These results allow us to derive the direct aerosol effect of absorbing aerosols in cloudy scenes, with the effect of cloudy-scene aerosol absorption in the tropical- and subtropical Atlantic contributing (+21.2±11.1)×10−3 Wm−2 to the global top of the atmosphere radiative forcing.
Resumo:
Sixteen years (1994 – 2009) of ozone profiling by ozonesondes at Valentia Meteorological and Geophysical Observatory, Ireland (51.94° N, 10.23° W) along with a co-located MkIV Brewer spectrophotometer for the period 1993–2009 are analyzed. Simple and multiple linear regression methods are used to infer the recent trend, if any, in stratospheric column ozone over the station. The decadal trend from 1994 to 2010 is also calculated from the monthly mean data of Brewer and column ozone data derived from satellite observations. Both of these show a 1.5 % increase per decade during this period with an uncertainty of about ±0.25 %. Monthly mean data for March show a much stronger trend of ~ 4.8 % increase per decade for both ozonesonde and Brewer data. The ozone profile is divided between three vertical slots of 0–15 km, 15–26 km, and 26 km to the top of the atmosphere and a 11-year running average is calculated. Ozone values for the month of March only are observed to increase at each level with a maximum change of +9.2 ± 3.2 % per decade (between years 1994 and 2009) being observed in the vertical region from 15 to 26 km. In the tropospheric region from 0 to 15 km, the trend is positive but with a poor statistical significance. However, for the top level of above 26 km the trend is significantly positive at about 4 % per decade. The March integrated ozonesonde column ozone during this period is found to increase at a rate of ~6.6 % per decade compared with the Brewer and satellite positive trends of ~5 % per decade.
Resumo:
BACKGROUND: Several studies have shown that adherence to the Mediterranean Diet measured by using the Mediterranean diet score (MDS) is associated with lower obesity risk. The newly proposed Nordic Diet could hold similar beneficial effects. Because of the increasing focus on the interaction between diet and genetic predisposition to adiposity, studies should consider both diet and genetics. OBJECTIVE: We investigated whether FTO rs9939609 and TCF7L2 rs7903146 modified the association between the MDS and Nordic diet score (NDS) and changes in weight (Δweight), waist circumference (ΔWC), and waist circumference adjusted for body mass index (BMI) (ΔWCBMI). DESIGN: We conducted a case-cohort study with a median follow-up of 6.8 y that included 11,048 participants from 5 European countries; 5552 of these subjects were cases defined as individuals with the greatest degree of unexplained weight gain during follow-up. A randomly selected subcohort included 6548 participants, including 5496 noncases. Cases and noncases were compared in analyses by using logistic regression. Continuous traits (ie, Δweight, ΔWC, and ΔWCBMI) were analyzed by using linear regression models in the random subcohort. Interactions were tested by including interaction terms in models. RESULTS: A higher MDS was significantly inversely associated with case status (OR: 0.98; 95% CI: 0.96, 1.00), ΔWC (β = -0.010 cm/y; 95% CI: -0.020, -0.001 cm/y), and ΔWCBMI (β = -0.008; 95% CI:-0.015, -0.001) per 1-point increment but not Δweight (P = 0.53). The NDS was not significantly associated with any outcome. There was a borderline significant interaction between the MDS and TCF7L2 rs7903146 on weight gain (P = 0.05), which suggested a beneficial effect of the MDS only in subjects who carried 1 or 2 risk alleles. FTO did not modify observed associations. CONCLUSIONS: A high MDS is associated with a lower ΔWC and ΔWCBMI, regardless of FTO and TCF7L2 risk alleles. For Δweight, findings were less clear, but the effect may depend on the TCF7L2 rs7903146 variant. The NDS was not associated with anthropometric changes during follow-up.
Resumo:
The present study evaluated the effects of climate variability on maize (Zea mays L.) yield in Sri Lanka at different spatial scales. Biophysical data from the Department of Agriculture (DOA) in Sri Lanka for six major maize-growing districts (Ampara, Anuradhapura, Badulla, Hambantota, Moneragala, and Kurunegala) from 1990 to 2010 were analyzed. Simple linear regression models were fitted to observed climate data and detrended maize yield to identify significant correlations. The correlation between first differences of maize yield and climate (r) was further investigated at 0.50° grid scale using interpolated climate data. After 2003, significantly positive (p < 0.01) yield trends varied from 154 kg ha–1 yr–1 to 360 kg ha–1 yr–1. The correlations between maize yield and climate reported that five out of six districts were significant at 10% level. Rainfall had a consistent significant (p < 0.10) positive impact on maize yield in Anuradhapura, Hambantota, and Moneragala, where seasonal total rainfall together with high temperature (“hot-dry”) are the key limitations. Further, the seasonal mean temperature had a negative impact on maize yield in Moneragala (“hot-dry”), the only district that showed high temperatures. Badulla district (“cold-dry”) reported a significant (r = 0.38) positive correlation with mean seasonal temperature, indicating higher potential toward increasing temperatures. Each 1°C rise in seasonal mean temperature reduced maize yield by about 5% from 1990 to 2010. Overall, there was a reasonable correlation between district maize yield and seasonal climate in most of the districts within the maize belt of Sri Lanka.
Resumo:
We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Nino-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with the Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 prediction skill, providing targets for model improvement.
Resumo:
Background: There is evidence that physical activity (PA) can attenuate the influence of the fat mass- and obesity-associated (FTO) genotype on the risk to develop obesity. However, whether providing personalized information on FTO genotype leads to changes in PA is unknown. Objective: The purpose of this study was to determine if disclosing FTO risk had an impact on change in PA following a 6-month intervention. Methods: The single nucleotide polymorphism (SNP) rs9939609 in the FTO gene was genotyped in 1279 participants of the Food4Me study, a four-arm, Web-based randomized controlled trial (RCT) in 7 European countries on the effects of personalized advice on nutrition and PA. PA was measured objectively using a TracmorD accelerometer and was self-reported using the Baecke questionnaire at baseline and 6 months. Differences in baseline PA variables between risk (AA and AT genotypes) and nonrisk (TT genotype) carriers were tested using multiple linear regression. Impact of FTO risk disclosure on PA change at 6 months was assessed among participants with inadequate PA, by including an interaction term in the model: disclosure (yes/no) × FTO risk (yes/no). Results: At baseline, data on PA were available for 874 and 405 participants with the risk and nonrisk FTO genotypes, respectively. There were no significant differences in objectively measured or self-reported baseline PA between risk and nonrisk carriers. A total of 807 (72.05%) of the participants out of 1120 in the personalized groups were encouraged to increase PA at baseline. Knowledge of FTO risk had no impact on PA in either risk or nonrisk carriers after the 6-month intervention. Attrition was higher in nonrisk participants for whom genotype was disclosed (P=.01) compared with their at-risk counterparts. Conclusions: No association between baseline PA and FTO risk genotype was observed. There was no added benefit of disclosing FTO risk on changes in PA in this personalized intervention. Further RCT studies are warranted to confirm whether disclosure of nonrisk genetic test results has adverse effects on engagement in behavior change.
Resumo:
This study investigated the relationship between iron deficiency/iron deficiency anaemia, assessed by several parameters, and blood lead concentration in children. This cross-sectional study involved 384 Brazilian children, aged 2-11 years, who lived near a lead-manipulating industry. Complete blood counts were obtained by an automated cell counter. Serum iron, total iron binding capacity (TIBC) and ferritin were determined respectively, by colorimetric, turbidimetric methods and chemiluminescence. Blood lead was measured by atomic absorption spectrophotometry. The impact of several parameters for assessment of iron status (haemoglobin, serum iron, TIBC, transferrin saturation, ferritin, red cell indices and red cell distribution width) and variables (gender, age, mother`s education, income, body mass index, iron intake, and distance from home to lead-manipulating industry) on blood lead concentration was determined by multiple linear regression. There were significant negative associations between blood lead and the distance from home to the lead-manipulating industry (P < 0.001), Hb (P = 0.019), and ferritin (P=0.023) (R(2)=0.14). Based on these results, further epidemiological studies are necessary to investigate the impact of interventions like iron supplementation or fortification, as an attempt to decrease blood lead in children. (C) 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: To describe the results of a nutritional intervention programme among Japanese-Brazilians according to gender. Design: A non-controlled experimental study. Setting: The research included three points of clinical, nutritional and physical activity evaluation: at baseline (in 2005), after the first year and at the end of the second year (in 2007). The paired Student t test and multiple linear regression analysis were used to evaluate changes in the subjects` profile (clinical, nutritional and physical activity variables). Subjects: Japanese-Brazilians (n 575) of both genders, aged over 30 years. Results: We verified statistically significant reductions in body weight (0.9 kg), waist circumference (2.9 cm), blood pressure, fasting blood glucose (>3 mg/dl) and total cholesterol (>20 mg/dl) and its fractions, in both genders. We also found reductions in intake of energy (among men), protein (among women) and fat (both genders) and increases in intake of total fibre (among women) and carbohydrate (among men). Conclusions: The intervention programme indicated meaningful benefits for the intervention subjects, with changes in their habits that led to a `healthier` lifestyle positively impacting their nutritional and metabolic profile.
Resumo:
The workplace is a manageable community-based setting for ensuring proper nutrition. This study aimed to evaluate dietary quality and associated factors among adult workers at a cosmetics factory in the metropolitan area of Sao Paulo, Brazil. This factory was actively participating in the Brazilian Workers` Meal Program, which was created to ensure workers` nutritional health. In this cross-sectional study, data on 202 adult workers were assessed using questionnaires (sociodemographic, anthropometric, and lifestyle characteristics) administered during August and September 2006. Dietary intake, measured by 24-hour dietary recall, was used to calculate the modified Healthy Eating Index (HEI). A repeated administration of the 24-hour dietary recall was applied in a random subsample to calculate the modified HEI adjusted for the within-person variation in intake. Mean adjusted modified HEI scores were analyzed using multiple linear regression adjusted for energy. The mean adjusted modified HEI score was 72.3 +/- 8.0. The lowest adjusted modified HEI components scores were ""milk and dairy products"" (4.4 +/- 3.2) and ""sodium"" (3.7 +/- 3.1). Two percent of workers had ""poor diet"" (adjusted modified HEI score <51 points) and the majority (87%) had ""diet that needs modification"" (adjusted modified HEI score between 51 and 80), despite their participation in the meal program. Adjusted modified HEI scores were considerably higher for men (74.7 +/- 7.0) than for women (66.9 +/- 8.2) and for normal body mass index (calculated as kg/m(2)) (73.3 +/- 7.8) than for overweight/obese (70.9 +/- 8.1). Based on these results, the vast majority of workers were found to have diets that needed improvement. Individuals with higher-quality diets were more likely to have lower body mass index and to be male. J Am Diet Assoc. 2010;110:786-790.