857 resultados para moving boxes
Resumo:
In this work the concept of integrating tracking in concentrating photovoltaics is briefly summarized and possible fields of application are classified. A previously proposed system setup relies on the use of two rotational symmetric laterally moving plano-convex lenses to achieve 500× concentration over an angular range of ±24 ◦ . However, the circular lens apertures are less suitable for application in lens array structures. A new design algorithm based on the Simultaneous Multiple Surface algorithm in three dimensions (SMS3D) demonstrates the ability to address this problem. Performance simulations show that the resulting non-rotational symmetric design outperforms its conventional rotational symmetric counterpart
Resumo:
Here, a novel and efficient moving object detection strategy by non-parametric modeling is presented. Whereas the foreground is modeled by combining color and spatial information, the background model is constructed exclusively with color information, thus resulting in a great reduction of the computational and memory requirements. The estimation of the background and foreground covariance matrices, allows us to obtain compact moving regions while the number of false detections is reduced. Additionally, the application of a tracking strategy provides a priori knowledge about the spatial position of the moving objects, which improves the performance of the Bayesian classifier
Resumo:
This paper presents a mapping method for wide row crop fields. The resulting map shows the crop rows and weeds present in the inter-row spacing. Because field videos are acquired with a camera mounted on top of an agricultural vehicle, a method for image sequence stabilization was needed and consequently designed and developed. The proposed stabilization method uses the centers of some crop rows in the image sequence as features to be tracked, which compensates for the lateral movement (sway) of the camera and leaves the pitch unchanged. A region of interest is selected using the tracked features, and an inverse perspective technique transforms the selected region into a bird’s-eye view that is centered on the image and that enables map generation. The algorithm developed has been tested on several video sequences of different fields recorded at different times and under different lighting conditions, with good initial results. Indeed, lateral displacements of up to 66% of the inter-row spacing were suppressed through the stabilization process, and crop rows in the resulting maps appear straight
Resumo:
Lateral moving optics along straight path has already been studied in the past. However, their relative small angular range can be a limitation to potential applications. In this work, a new design concept of SMS moving optics is developed, in which the movement is no longer lateral but follows a curved trajectory, which is calculated in the design process. We have chosen an afocal system, which aim to direct the parallel rays of large incident angles to parallel output rays, and we have obtained that the RMS of the divergence angle of the output rays remains below 1 degree within a input angular range of ±45 output. Potential applications of this beam-steering device are: skylights to provide steerable natural illumination, building integrated CPV systems, and steerable LED illumination.
Resumo:
This paper presents the results of part of the research carried out by a committee in charge of the elaboration of the new Spanish Code of Actions in Railway Bridges. Following the work developed by the European Rail Research Institute (ERRI), the dynamic effects caused by the Spanish high-speed train TALGO have been studied and compared with other European trains. A simplified envelope of the impact coefficient is also presented. Finally, the train-bridge interactions has been analysed and the results compared with those obtained from simple models based on moving loads.
Resumo:
Along the recent years, several moving object detection strategies by non-parametric background-foreground modeling have been proposed. To combine both models and to obtain the probability of a pixel to belong to the foreground, these strategies make use of Bayesian classifiers. However, these classifiers do not allow to take advantage of additional prior information at different pixels. So, we propose a novel and efficient alternative Bayesian classifier that is suitable for this kind of strategies and that allows the use of whatever prior information. Additionally, we present an effective method to dynamically estimate prior probability from the result of a particle filter-based tracking strategy.
Resumo:
A spatial-color-based non-parametric background-foreground modeling strategy in a GPGPU by using CUDA is proposed. This strategy is suitable for augmented-reality applications, providing real-time high-quality results in a great variety of scenarios.
Resumo:
The last generation of consumer electronic devices is endowed with Augmented Reality (AR) tools. These tools require moving object detection strategies, which should be fast and efficient, to carry out higher level object analysis tasks. We propose a lightweight spatio-temporal-based non-parametric background-foreground modeling strategy in a General Purpose Graphics Processing Unit (GPGPU), which provides real-time high-quality results in a great variety of scenarios and is suitable for AR applications.
Resumo:
Electronic devices endowed with camera platforms require new and powerful machine vision applications, which commonly include moving object detection strategies. To obtain high-quality results, the most recent strategies estimate nonparametrically background and foreground models and combine them by means of a Bayesian classifier. However, typical classifiers are limited by the use of constant prior values and they do not allow the inclusion of additional spatiodependent prior information. In this Letter, we propose an alternative Bayesian classifier that, unlike those reported before, allows the use of additional prior information obtained from any source and depending on the spatial position of each pixel.
Resumo:
In tethered satellite technology, it is important to estimate how many electrons a spacecraft can collect from its ambient plasma by a bare electrodynamic tether. The analysis is however very difficult because of the small but significant Geo-magnetic field and the spacecraft’s relative motion to both ions and electrons. The object of our work is the development of a numerical method, for this purpose. Particle-In-Cell (PIC) method, for the calculation of electron current to a positive bare tether moving at orbital velocity in the ionosphere, i.e. in a flowing magnetized plasma under Maxwellian collisionless conditions. In a PIC code, a number of particles are distributed in phase space and the computational domain has a grid on which Poisson equation is solved for field quantities. The code uses the quasi-neutrality condition to solve for the local potential at points in the plasma which coincide with the computational outside boundary. The quasi-neutrality condition imposes ne - ni on the boundary. The Poisson equation is solved in such a way that the presheath region can be captured in the computation. Results show that the collected current is higher than the Orbital Motion Limit (OML) theory. The OML current is the upper limit of current collection under steady collisionless unmagnetized conditions. In this work, we focus on the flowing effects of plasma as a possible cause of the current enhancement. A deficit electron density due to the flowing effects has been worked and removed by introducing adiabatic electron trapping into our model.
Resumo:
Las casitas de Campo Baeza y la cajita del Principito
Resumo:
A novel GPU-based nonparametric moving object detection strategy for computer vision tools requiring real-time processing is proposed. An alternative and efficient Bayesian classifier to combine nonparametric background and foreground models allows increasing correct detections while avoiding false detections. Additionally, an efficient region of interest analysis significantly reduces the computational cost of the detections.
Resumo:
Synthetic Aperture Radar’s (SAR) are systems designed in the early 50’s that are capable of obtaining images of the ground using electromagnetic signals. Thus, its activity is not interrupted by adverse meteorological conditions or during the night, as it occurs in optical systems. The name of the system comes from the creation of a synthetic aperture, larger than the real one, by moving the platform that carries the radar (typically a plane or a satellite). It provides the same resolution as a static radar equipped with a larger antenna. As it moves, the radar keeps emitting pulses every 1/PRF seconds —the PRF is the pulse repetition frequency—, whose echoes are stored and processed to obtain the image of the ground. To carry out this process, the algorithm needs to make the assumption that the targets in the illuminated scene are not moving. If that is the case, the algorithm is able to extract a focused image from the signal. However, if the targets are moving, they get unfocused and/or shifted from their position in the final image. There are applications in which it is especially useful to have information about moving targets (military, rescue tasks,studyoftheflowsofwater,surveillanceofmaritimeroutes...).Thisfeatureiscalled Ground Moving Target Indicator (GMTI). That is why the study and the development of techniques capable of detecting these targets and placing them correctly in the scene is convenient. In this document, some of the principal GMTI algorithms used in SAR systems are detailed. A simulator has been created to test the features of each implemented algorithm on a general situation with moving targets. Finally Monte Carlo tests have been performed, allowing us to extract conclusions and statistics of each algorithm.
Resumo:
A novel and high-quality system for moving object detection in sequences recorded with moving cameras is proposed. This system is based on the collaboration between an automatic homography estimation module for image alignment, and a robust moving object detection using an efficient spatiotemporal nonparametric background modeling.
Resumo:
The wavelet transform and Lipschitz exponent perform well in detecting signal singularity.With the bridge crack damage modeled as rotational springs based on fracture mechanics, the deflection time history of the beam under the moving load is determined with a numerical method. The continuous wavelet transformation (CWT) is applied to the deflection of the beam to identify the location of the damage, and the Lipschitz exponent is used to evaluate the damage degree. The influence of different damage degrees,multiple damage, different sensor locations, load velocity and load magnitude are studied.Besides, the feasibility of this method is verified by a model experiment.