949 resultados para heat demand


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat shock factors (HSFs) are an evolutionarily well conserved family of transcription factors that coordinate stress-induced gene expression and direct versatile physiological processes in eukaryote organisms. The essentiality of HSFs for cellular homeostasis has been well demonstrated, mainly through HSF1-induced transcription of heat shock protein (HSP) genes. HSFs are important regulators of many fundamental processes such as gametogenesis, metabolic control and aging, and are involved in pathological conditions including cancer progression and neurodegenerative diseases. In each of the HSF-mediated processes, however, the detailed mechanisms of HSF family members and their complete set of target genes have remained unknown. Recently, rapid advances in chromatin studies have enabled genome-wide characterization of protein binding sites in a high resolution and in an unbiased manner. In this PhD thesis, these novel methods that base on chromatin immunoprecipitation (ChIP) are utilized and the genome-wide target loci for HSF1 and HSF2 are identified in cellular stress responses and in developmental processes. The thesis and its original publications characterize the individual and shared target genes of HSF1 and HSF2, describe HSF1 as a potent transactivator, and discover HSF2 as an epigenetic regulator that coordinates gene expression throughout the cell cycle progression. In male gametogenesis, novel physiological functions for HSF1 and HSF2 are revealed and HSFs are demonstrated to control the expression of X- and Y-chromosomal multicopy genes in a silenced chromatin environment. In stressed human cells, HSF1 and HSF2 are shown to coordinate the expression of a wide variety of genes including genes for chaperone machinery, ubiquitin, regulators of cell cycle progression and signaling. These results highlight the importance of cell type and cell cycle phase in transcriptional responses, reveal the myriad of processes that are adjusted in a stressed cell and describe novel mechanisms that maintain transcriptional memory in mitotic cell division.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basis of this thesis was to optimize heat pump that uses multiple heat sources to get competitive heating system for residential building when life cycle costs are considered. The objectives were to compile necessary information to calculate life cycle costs for heating system of residential building and start to compose of designing program for heat pump based heating systems. Examinations were made for the purchase energy need of residential building. Features of heat pump, considered refrigerant and potential heat sources were examined to find out heat production potential of heat pumps. Necessary information for life cycle cost calculation was also examined. Collected data was used in two case analyses to design selected heat production systems and calculate their life cycle costs. On the basis of case analyses heat pump based hybrid heat production systems are very competitive on life cycle cost comparison against district heating when residential building uses a lot of energy. New buildings use considerably less energy and achieved energy cost savings with heat pump systems may not be enough to cover the relatively high investment cost in reasonable time period compared to district heating system. The calculation method was found to require further development to at least include the cooling energy need of the building. Cooling demand will continue to grow in the future, which improves the heat pump based heat production systems competitiveness compared to other systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis was to study the design of demand forecasting processes and management of demand. In literature review were different processes found and forecasting methods and techniques interviewed. Also role of bullwhip effect in supply chain was identified and how to manage it with information sharing operations. In the empirical part of study is at first described current situation and challenges in case company. After that will new way to handle demand introduced with target budget creation and how information sharing with 5 products and a few customers would bring benefits to company. Also the new S&OP process created within this study and organization for it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term urban heat island (UHI) refers to the common situation in which the city is warmer than its rural surroundings. In this dissertation, the local climate, and especially the UHI, of the coastal city of Turku (182,000 inh.), SW Finland, was studied in different spatial and temporal scales. The crucial aim was to sort out the urban, topographical and water body impact on temperatures at different seasons and times of the day. In addition, the impact of weather on spatiotemporal temperature differences was studied. The relative importance of environmental factors was estimated with different modelling approaches and a large number of explanatory variables with various spatial scales. The city centre is the warmest place in the Turku area. Temperature excess relative to the coldest sites, i.e. rural areas about 10 kilometers to the NE from the centre, is on average 2 °C. Occasionally, the UHI intensity can be even 10 °C. The UHI does not prevail continuously in the Turku area, but occasionally the city centre can be colder than its surroundings. Then the term urban cool island or urban cold island (UCI) is used. The UCI is most common in daytime in spring and in summer, whereas during winter the UHI prevails throughout the day. On average, the spatial temperature differences are largest in summer, whereas the single extreme values are often observed in winter. The seasonally varying sea temperature causes the shift of relatively warm areas towards the coast in autumn and inland in spring. In the long term, urban land use was concluded to be the most important factor causing spatial temperature differences in the Turku area. The impact was mainly a warming one. The impact of water bodies was emphasised in spring and autumn, when the water temperature was relatively cold and warm, respectively. The impact of topography was on average the weakest, and was seen mainly in proneness of relatively low-lying places for cold air drainage during night-time. During inversions, however, the impact of topography was emphasised, occasionally outperforming those of urban land use and water bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental issues, including global warming, have been serious challenges realized worldwide, and they have become particularly important for the iron and steel manufacturers during the last decades. Many sites has been shut down in developed countries due to environmental regulation and pollution prevention while a large number of production plants have been established in developing countries which has changed the economy of this business. Sustainable development is a concept, which today affects economic growth, environmental protection, and social progress in setting up the basis for future ecosystem. A sustainable headway may attempt to preserve natural resources, recycle and reuse materials, prevent pollution, enhance yield and increase profitability. To achieve these objectives numerous alternatives should be examined in the sustainable process design. Conventional engineering work cannot address all of these substitutes effectively and efficiently to find an optimal route of processing. A systematic framework is needed as a tool to guide designers to make decisions based on overall concepts of the system, identifying the key bottlenecks and opportunities, which lead to an optimal design and operation of the systems. Since the 1980s, researchers have made big efforts to develop tools for what today is referred to as Process Integration. Advanced mathematics has been used in simulation models to evaluate various available alternatives considering physical, economic and environmental constraints. Improvements on feed material and operation, competitive energy market, environmental restrictions and the role of Nordic steelworks as energy supplier (electricity and district heat) make a great motivation behind integration among industries toward more sustainable operation, which could increase the overall energy efficiency and decrease environmental impacts. In this study, through different steps a model is developed for primary steelmaking, with the Finnish steel sector as a reference, to evaluate future operation concepts of a steelmaking site regarding sustainability. The research started by potential study on increasing energy efficiency and carbon dioxide reduction due to integration of steelworks with chemical plants for possible utilization of available off-gases in the system as chemical products. These off-gases from blast furnace, basic oxygen furnace and coke oven furnace are mainly contained of carbon monoxide, carbon dioxide, hydrogen, nitrogen and partially methane (in coke oven gas) and have proportionally low heating value but are currently used as fuel within these industries. Nonlinear optimization technique is used to assess integration with methanol plant under novel blast furnace technologies and (partially) substitution of coal with other reducing agents and fuels such as heavy oil, natural gas and biomass in the system. Technical aspect of integration and its effect on blast furnace operation regardless of capital expenditure of new operational units are studied to evaluate feasibility of the idea behind the research. Later on the concept of polygeneration system added and a superstructure generated with alternative routes for off-gases pretreatment and further utilization on a polygeneration system producing electricity, district heat and methanol. (Vacuum) pressure swing adsorption, membrane technology and chemical absorption for gas separation; partial oxidation, carbon dioxide and steam methane reforming for methane gasification; gas and liquid phase methanol synthesis are the main alternative process units considered in the superstructure. Due to high degree of integration in process synthesis, and optimization techniques, equation oriented modeling is chosen as an alternative and effective strategy to previous sequential modelling for process analysis to investigate suggested superstructure. A mixed integer nonlinear programming is developed to study behavior of the integrated system under different economic and environmental scenarios. Net present value and specific carbon dioxide emission is taken to compare economic and environmental aspects of integrated system respectively for different fuel systems, alternative blast furnace reductants, implementation of new blast furnace technologies, and carbon dioxide emission penalties. Sensitivity analysis, carbon distribution and the effect of external seasonal energy demand is investigated with different optimization techniques. This tool can provide useful information concerning techno-environmental and economic aspects for decision-making and estimate optimal operational condition of current and future primary steelmaking under alternative scenarios. The results of the work have demonstrated that it is possible in the future to develop steelmaking towards more sustainable operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low levels of sex hormone-binding globulin (SHBG) are considered to be an indirect index of hyperinsulinemia, predicting the later onset of diabetes mellitus type 2. In the insulin resistance state and in the presence of an increased pancreatic ß-cell demand (e.g. obesity) both absolute and relative increases in proinsulin secretion occur. In the present study we investigated the correlation between SHBG and pancreatic ß-cell secretion in men with different body compositions. Eighteen young men (30.0 ± 2.4 years) with normal glucose tolerance and body mass indexes (BMI) ranging from 22.6 to 43.2 kg/m2 were submitted to an oral glucose tolerance test (75 g) and baseline and 120-min blood samples were used to determine insulin, proinsulin and C-peptide by specific immunoassays. Baseline SHBG values were significantly correlated with baseline insulin (r = -0.58, P<0.05), proinsulin (r = -0.47, P<0.05), C-peptide (r = -0.55, P<0.05) and also with proinsulin at 120 min after glucose load (r = -0.58, P<0.05). Stepwise regression analysis revealed that proinsulin values at 120 min were the strongest predictor of SHBG (r = -0.58, P<0.05). When subjects were divided into obese (BMI >28 kg/m2, N = 8) and nonobese (BMI £25 kg/m2, N = 10) groups, significantly lower levels of SHBG were found in the obese subjects. The obese group had significantly higher baseline proinsulin, C-peptide and 120-min proinsulin and insulin levels. For the first time using a specific assay for insulin determination, a strong inverse correlation between insulinemia and SHBG levels was confirmed. The finding of a strong negative correlation between SHBG levels and pancreatic ß-cell secretion, mainly for the 120-min post-glucose load proinsulin levels, reinforces the concept that low SHBG levels are a suitable marker of increased pancreatic ß-cell demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän diplomityön tarkoituksena on selvittää mahdollisuuksia Kotkan Energia Oy:n kaukolämpöverkon ja aivan erityisesti sen käytön kehittämiseen. Kaukolämmön optimaalinen toimittaminen on tasapainoilua kaukolämpöveden virtausten ja lämpötilojen välillä. Kaukolämpöverkon käyttöä voidaan parantaa laskemalla syötettävän kaukolämpöveden menolämpötilaa muu tuotanto ja asiakkaiden tarpeet huomioiden. Lämpötiloja laskiessa verkon oikein ajoitettu varaaminen muuttuu entistä tärkeämmäksi tekijäksi, koska sen avulla voidaan vähentää varatehon käyttöä. Alhaisempi menolämpötila laskee kaukolämpöverkon lämpöhäviöitä, mutta lisää kaukolämpöveden virtausta kuluttajien tehontarpeen pysyessä vakiona. Välipumppauksen käyttö sekä matalammat paine-erot laskevat pumppaushäviöitä, mutta työssä tehtyjen havaintojen perusteella selvästi suurin vaikutus kustannuksiin on lämpöhäviöillä. Laitoskäytöstä vastaavat operaattorit ohjaavat myös kaukolämpöverkon käyttöä, mikä tekee heidän toiminnastaan kriittisen tärkeää kaukolämpöverkon käytön optimoinnin kannalta. Kaukolämpöakku havaittiin myös kannattavaksi investoinniksi, joka samalla vähentäisi tuotannon riippuvuutta operaattorien päätöksistä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal environmental stress can anticipate acute fatigue during exercise at a fixed intensity (%VO2max). Controversy exists about whether this anticipation is caused by the absolute internal temperature (Tint, ºC), by the heat storage rate (HSR, cal/min) or by both mechanisms. The aim of the present study was to study acute fatigue (total exercise time, TET) during thermal stress by determining Tint and HSR from abdominal temperature. Thermal environmental stress was controlled in an environmental chamber and determined as wet bulb globe temperature (ºC), with three environmental temperatures being studied: cold (18ºC), thermoneutral (23.1ºC) or hot (29.4ºC). Six untrained male Wistar rats weighing 260-360 g were used. The animals were submitted to exercise at the same time of day in the three environments and at two treadmill velocities (21 and 24 m/min) until exhaustion. After implantation of a temperature sensor and treadmill adaptation, the animals were submitted to a Latin square experimental design using a 2 x 3 factorial scheme (velocity and environment), with the level of significance set at P<0.05. The results showed that the higher the velocity and the ambient temperature, the lower was the TET, with these two factors being independent. This result indicated that fatigue was independently affected by both the increase in exercise intensity and the thermal environmental stress. Fatigue developed at different Tint and HSR showed the best inverse relationship with TET. We conclude that HSR was the main anticipating factor of fatigue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hormone replacement therapy (HRT) reduces cardiovascular risks, although the initiation of therapy may be associated with transient adverse ischemic and thrombotic events. Antibodies against heat shock protein (Hsp) and oxidized low density lipoprotein (LDL) have been found in atherosclerotic lesions and plasma of patients with coronary artery disease and may play an important role in the pathogenesis of atherosclerosis. The aim of the present study was to assess the effects of HRT on the immune response by measuring plasma levels of antibodies against Hsp 65 and LDL with a low and high degree of copper-mediated oxidative modification of 20 postmenopausal women before and 90 days after receiving orally 0.625 mg equine conjugate estrogen plus 2.5 mg medroxyprogesterone acetate per day. HRT significantly increased antibodies against Hsp 65 (0.316 ± 0.03 vs 0.558 ± 0.11) and against LDL with a low degree of oxidative modification (0.100 ± 0.01 vs 0.217 ± 0.02) (P<0.05 and P<0.001, respectively, ANOVA). The hormone-mediated immune response may trigger an inflammatory response within the vessel wall and potentially increase plaque burden. Whether or not this immune response is temporary or sustained and deleterious requires further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to search how to match the demand and supply effectively in industrial and project-oriented business environment. The demand-supply balancing process is searched through three different phases: the demand planning and forecasting, synchronization of demand and supply and measurement of the results. The thesis contains a single case study that has been implemented in a company called Outotec. In the case study the demand is planned and forecasted with qualitative (judgmental) forecasting method. The quantitative forecasting methods are searched further to support the demand forecast and long term planning. The sales and operations planning process is used in the synchronization of the demand and supply. The demand forecast is applied in the management of a supply chain of critical unit of elemental analyzer. Different meters on operational and strategic level are proposed for the measurement of performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studied the performance of Advanced metering infrastructure systems in a challenging Demand Response environment. The aim was to find out what kind of challenges and bottlenecks could be met when utilizing AMI-systems in challenging Demand Response tasks. To find out the challenges and bottlenecks, a multilayered demand response service concept was formed. The service consists of seven different market layers which consist of Nordic electricity market and the reserve markets of Fingrid. In the simulations the AMI-systems were benchmarked against these seven market layers. It was found out, that the current generation AMI-systems were capable of delivering Demand Response on the most challenging market layers, when observed from time critical viewpoint. Additionally, it was found out, that to enable wide scale Demand Response there are three major challenges to be acknowledged. The challenges hindering the utilization of wide scale Demand Response were related to poor standardization of the systems in use, possible problems in data connectivity solutions and the current electricity market regulation model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research concerns different statistical methods that assist to increase the demand forecasting accuracy of company X’s forecasting model. Current forecasting process was analyzed in details. As a result, graphical scheme of logical algorithm was developed. Based on the analysis of the algorithm and forecasting errors, all the potential directions for model future improvements in context of its accuracy were gathered into the complete list. Three improvement directions were chosen for further practical research, on their basis, three test models were created and verified. Novelty of this work lies in the methodological approach of the original analysis of the model, which identified its critical points, as well as the uniqueness of the developed test models. Results of the study formed the basis of the grant of the Government of St. Petersburg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydration is recommended in order to decrease the overload on the cardiovascular system when healthy individuals exercise, mainly in the heat. To date, no criteria have been established for hydration for hypertensive (HY) individuals during exercise in a hot environment. Eight male HY volunteers without another medical problem and 8 normal (NO) subjects (46 ± 3 and 48 ± 1 years; 78.8 ± 2.5 and 79.5 ± 2.8 kg; 171 ± 2 and 167 ± 1 cm; body mass index = 26.8 ± 0.7 and 28.5 ± 0.6 kg/m²; resting systolic (SBP) = 142.5 and 112.5 mmHg and diastolic blood pressure (DBP) = 97.5 and 78.1 mmHg, respectively) exercised for 60 min on a cycle ergometer (40% of VO2peak) with (500 ml 2 h before and 115 ml every 15 min throughout exercise) or without water ingestion, in a hot humid environment (30ºC and 85% humidity). Rectal (Tre) and skin (Tsk) temperatures, heart rate (HR), SBP, DBP, double product (DP), urinary volume (Vu), urine specific gravity (Gu), plasma osmolality (Posm), sweat rate (S R), and hydration level were measured. Data were analyzed using ANOVA in a split plot design, followed by the Newman-Keuls test. There were no differences in Vu, Posm, Gu and S R responses between HY and NO during heat exercise with or without water ingestion but there was a gradual increase in HR (59 and 51%), SBP (18 and 28%), DP (80 and 95%), Tre (1.4 and 1.3%), and Tsk (6 and 3%) in HY and NO, respectively. HY had higher HR (10%), SBP (21%), DBP (20%), DP (34%), and Tsk (1%) than NO during both experimental situations. The exercise-related differences in SBP, DP and Tsk between HY and NO were increased by water ingestion (P < 0.05). The results showed that cardiac work and Tsk during exercise were higher in HY than in NO and the difference between the two groups increased even further with water ingestion. It was concluded that hydration protocol recommended for NO during exercise could induce an abnormal cardiac and thermoregulatory responses for HY individuals without drug therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand forecasting is one of the fundamental managerial tasks. Most companies do not know their future demands, so they have to make plans based on demand forecasts. The literature offers many methods and approaches for producing forecasts. Former literature points out that even though many forecasting methods and approaches are available, selecting a suitable approach and implementing and managing it is a complex cross-functional matter. However, it’s relatively rare that researches are focused on the differences in forecasting between consumer and industrial companies. The aim of this thesis is to investigate the potential of improving demand forecasting practices for B2B and B2C sectors in the global supply chains. Business to business (B2B) sector produces products for other manufacturing companies. On the other hand, consumer (B2C) sector provides goods for individual buyers. Usually industrial sector have a lower number of customers and closer relationships with them. The research questions of this thesis are: 1) What are the main differences and similarities in demand planning between B2B and B2C sectors? 2) How the forecast performance for industrial and consumer companies can be improved? The main methodological approach in this study is design science, where the main objective is to develop tentative solutions to real-life problems. The research data has been collected from a case company. Evaluation and improving in organizing demand forecasting can be found in three interlinked areas: 1) demand planning operational environment, 2) demand forecasting techniques, 3) demand information sharing scenarios. In this research current B2B and B2C demand practices are presented with further comparison between those two sectors. It was found that B2B and B2C sectors have significant differences in demand practices. This research partly filled the theoretical gap in understanding the difference in forecasting in consumer and industrial sectors. In all these areas, examples of managerial problems are described, and approaches for mitigating these problems are outlined.