940 resultados para enchancesprotective immunity
Resumo:
Atherosclerosis is an inflammatory disease characterized by accumulation of lipids in the inner layer of the arterial wall. During atherogenesis, various structures that are recognized as non-self by the immune system, such as modified lipoproteins, are deposited in the arterial wall. Accordingly, atherosclerotic lesions and blood of humans and animals with atherosclerotic lesions show signs of activation of both innate and adaptive immune responses. Although immune attack is initially a self-protective reaction, which is meant to destroy or remove harmful agents, a chronic inflammatory state in the arterial wall accelerates atherosclerosis. Indeed, various modulations of the immune system of atherosclerosis-prone animals have provided us with convincing evidence that immunological mechanisms play an important role in the pathogenesis of atherosclerosis. This thesis focuses on the role of complement system, a player of the innate immunity, in atherosclerosis. Complement activation via any of the three different pathways (classical, alternative, lectin) proceeds as a self-amplifying cascade, which leads to the generation of opsonins, anaphylatoxins C3a and C5a, and terminal membrane-attack complex (MAC, C5b-9), all of which regulate the inflammatory response and act in concert to destroy their target structures. To prevent uncontrolled complement activation or its attack against normal host cells, complement needs to be under strict control by regulatory proteins. The complement system has been shown to be activated in atherosclerotic lesions, modified lipoproteins and immune complexes containing oxLDL, for instance, being its activators. First, we investigated the presence and role of complement regulators in human atherosclerotic lesions. We found that inhibitors of the classical and alternative pathways, C4b-binding protein and factor H, respectively, were present in atherosclerotic lesions, where they localized in the superficial proteoglycan-rich layer. In addition, both inhibitors were found to bind to arterial proteoglycans in vitro. Immunohistochemical stainings revealed that, in the superficial layer of the intima, complement activation had been limited to the C3 level, whereas in the deeper intimal layers, complement activation had proceeded to the terminal C5b-9 level. We were also able to show that arterial proteoglycans inhibit complement activation in vitro. These findings suggested to us that the proteoglycan-rich layer of the arterial intima contains matrix-bound complement inhibitors and forms a protective zone, in which complement activation is restricted to the C3 level. Thus, complement activation is regulated in atherosclerotic lesions, and the extracellular matrix is involved in this process. Next, we studied whether the receptors for the two complement derived effectors, anaphylatoxins C3a and C5a, are expressed in human coronary atherosclerotic lesions. Our results of immunohistochemistry and RT-PCR analysis showed that, in contrast to normal intima, C3aR and C5aR were highly expressed in atherosclerotic lesions. In atherosclerotic plaques, the principal cells expressing both C3aR and C5aR were macrophages. Moreover, T cells expressed C5aR, and a small fraction of them also expressed C3aR, mast cells expressed C5aR, whereas endothelial cells and subendothelial smooth muscle cells expressed both C3aR and C5aR. These results suggested that intimal cells can respond to and become activated by complement-derived anaphylatoxins. Finally, we wanted to learn, whether oxLDL-IgG immune complexes, activators of the classical complement pathway, could have direct cellular effects in atherogenesis. Thus, we tested whether oxLDL-IgG immune complexes affect the survival of human monocytes, the precursors of macrophages, which are the most abundant inflammatory cell type in atherosclerotic lesions. We found that OxLDL-IgG immune complexes, in addition to transforming monocytes into foam cells, promoted their survival by decreasing their spontaneous apoptosis. This effect was mediated by cross-linking Fc receptors with ensuing activation of Akt-dependent survival signaling. Our finding revealed a novel mechanism by which oxLDL-IgG immune complexes can directly affect the accumulation of monocyte-macrophages in human atherosclerotic lesions and thus play a role in atherogenesis.
Functional transfer of Salmonella pathogenicity island 2 to Salmonella bongori and Escherichia coli.
Resumo:
The type III secretion system (T3SS) encoded by the Salmonella pathogenicity island 2 (SPI2) has a central role in systemic infections by Salmonella enterica and for the intracellular phenotype. Intracellular S. enterica uses the SPI2-encoded T3SS to translocate a set of effector proteins into the host cell, which modify host cell functions, enabling intracellular survival and replication of the bacteria. We sought to determine whether specific functions of the SPI2-encoded T3SS can be transferred to heterologous hosts Salmonella bongori and Escherichia coli Mutaflor, species that lack the SPI2 locus and loci encoding effector proteins. The SPI2 virulence locus was cloned and functionally expressed in S. bongori and E. coli. Here, we demonstrate that S. bongori harboring the SPI2 locus is capable of secretion of SPI2 substrate proteins under culture conditions, as well as of translocation of effector proteins under intracellular conditions. An SPI2-mediated cellular phenotype was induced by S. bongori harboring the SPI2 if the sifA locus was cotransferred. An interference with the host cell microtubule cytoskeleton, a novel SPI2-dependent phenotype, was observed in epithelial cells infected with S. bongori harboring SPI2 without additional effector genes. S. bongori harboring SPI2 showed increased intracellular persistence in a cell culture model, but SPI2 transfer was not sufficient to confer to S. bongori systemic pathogenicity in a murine model. Transfer of SPI2 to heterologous hosts offers a new tool for the study of SPI2 functions and the phenotypes of individual effectors.
Resumo:
Gastrointestinal infections with Salmonella enterica serovars have different clinical outcomes that range from localized inflammation to a life-threatening systemic disease in the case of typhoid fever. Using a mouse model of systemic salmonellosis, we investigated the contribution of neutrophils to the innate immune defense against Salmonella after oral infection. Neutrophil infiltration was dependent on the bacterial burden in various infected organs (Peyer's patches, mesenteric lymph nodes, spleen, and liver). However, the massive infiltration of neutrophils did not allow clearance of an infection with wild-type Salmonella, presumably due to protection of intracellular Salmonella against neutrophil activities. A Salmonella mutant strain deficient in Salmonella pathogenicity island 2 (SPI2) was able to infect systemic sites, but its replication was highly restricted and it did not cause detectable attraction of neutrophils. Neutrophil depletion by antibody treatment of mice did not restore the virulence of SPI2 or auxotrophic mutant strains, supporting the hypothesis that attenuation of the strains is not due to greater susceptibility to neutrophil killing. Our observations reveal that neutrophils have completely different roles during systemic salmonellosis and localized gastrointestinal infections. In the latter conditions, rapid neutrophil attraction efficiently prevents the spread of the pathogen, whereas the neutrophil influx is delayed during systemic infections and cannot protect against lethal bacteremia.
Resumo:
Inducible nitric oxide synthase (iNOS) has important functions in innate immunity and regulation of immune functions. Here, the role of iNOS in the pathogenesis of various intracellular bacterial infections is discussed. These pathogens have also evolved a broad array of strategies to repair damage by reactive nitrogen intermediates, and to suppress or inhibit functions of iNOS.
Resumo:
Mycobacterium tuberculosis readily activates both CD4+ and Vdelta2+ gammadelta T cells. Despite similarity in function, these T-cell subsets differ in the antigens they recognize and the manners in which these antigens are presented by M. tuberculosis-infected monocytes. We investigated mechanisms of antigen processing of M. tuberculosis antigens to human CD4 and gammadelta T cells by monocytes. Initial uptake of M. tuberculosis bacilli and subsequent processing were required for efficient presentation not only to CD4 T cells but also to Vdelta2+ gammadelta T cells. For gammadelta T cells, recognition of M. tuberculosis-infected monocytes was dependent on Vdelta2+ T-cell-receptor expression. Recognition of M. tuberculosis antigens by CD4+ T cells was restricted by the class II major histocompatibility complex molecule HLA-DR. Processing of M. tuberculosis bacilli for Vdelta2+ gammadelta T cells was inhibitable by Brefeldin A, whereas processing of soluble mycobacterial antigens for gammadelta T cells was not sensitive to Brefeldin A. Processing of M. tuberculosis bacilli for CD4+ T cells was unaffected by Brefeldin A. Lysosomotropic agents such as chloroquine and ammonium chloride did not affect the processing of M. tuberculosis bacilli for CD4+ and gammadelta T cells. In contrast, both inhibitors blocked processing of soluble mycobacterial antigens for CD4+ T cells. Chloroquine and ammonium chloride insensitivity of processing of M. tuberculosis bacilli was not dependent on the viability of the bacteria, since processing of both formaldehyde-fixed dead bacteria and mycobacterial antigens covalently coupled to latex beads was chloroquine insensitive. Thus, the manner in which mycobacterial antigens were taken up by monocytes (particulate versus soluble) influenced the antigen processing pathway for CD4+ and gammadelta T cells.
Resumo:
Mycobacterium tuberculosis is the etiologic agent of human tuberculosis and is estimated to infect one-third of the world's population. Control of M. tuberculosis requires T cells and macrophages. T-cell function is modulated by the cytokine environment, which in mycobacterial infection is a balance of proinflammatory (interleukin-1 [IL-1], IL-6, IL-8, IL-12, and tumor necrosis factor alpha) and inhibitory (IL-10 and transforming growth factor beta [TGF-beta]) cytokines. IL-10 and TGF-beta are produced by M. tuberculosis-infected macrophages. The effect of IL-10 and TGF-beta on M. tuberculosis-reactive human CD4(+) and gammadelta T cells, the two major human T-cell subsets activated by M. tuberculosis, was investigated. Both IL-10 and TGF-beta inhibited proliferation and gamma interferon production by CD4(+) and gammadelta T cells. IL-10 was a more potent inhibitor than TGF-beta for both T-cell subsets. Combinations of IL-10 and TGF-beta did not result in additive or synergistic inhibition. IL-10 inhibited gammadelta and CD4(+) T cells directly and inhibited monocyte antigen-presenting cell (APC) function for CD4(+) T cells and, to a lesser extent, for gammadelta T cells. TGF-beta inhibited both CD4(+) and gammadelta T cells directly and had little effect on APC function for gammadelta and CD4(+) T cells. IL-10 down-regulated major histocompatibility complex (MHC) class I, MHC class II, CD40, B7-1, and B7-2 expression on M. tuberculosis-infected monocytes to a greater extent than TGF-beta. Neither cytokine affected the uptake of M. tuberculosis by monocytes. Thus, IL-10 and TGF-beta both inhibited CD4(+) and gammadelta T cells but differed in the mechanism used to inhibit T-cell responses to M. tuberculosis.
Resumo:
Backround and Purpose The often fatal (in 50-35%) subarachnoid hemorrhage (SAH) caused by saccular cerebral artery aneurysm (SCAA) rupture affects mainly the working aged population. The incidence of SAH is 10-11 / 100 000 in Western countries and twice as high in Finland and Japan. The estimated prevalence of SCAAs is around 2%. Many of those never rupture. Currently there are, however, no diagnostic methods to identify rupture-prone SCAAs from quiescent, (dormant) ones. Finding diagnostic markers for rupture-prone SCAAs is of primary importance since a SCAA rupture has such a sinister outcome, and all current treatment modalities are associated with morbidity and mortality. Also the therapies that prevent SCAA rupture need to be developed to as minimally invasive as possible. Although the clinical risk factors for SCAA rupture have been extensively studied and documented in large patient series, the cellular and molecular mechanisms how these risk factors lead to SCAA wall rupture remain incompletely known. Elucidation of the molecular and cellular pathobiology of the SCAA wall is needed in order to develop i) novel diagnostic tools that could identify rupture-prone SCAAs or patients at risk of SAH, and to ii) develop novel biological therapies that prevent SCAA wall rupture. Materials and Methods In this study, histological samples from unruptured and ruptured SCAAs and plasma samples from SCAA carriers were compared in order to identify structural changes, cell populations, growth factor receptors, or other molecular markers that would associate with SCAA wall rupture. In addition, experimental saccular aneurysm models and experimental models of mechanical vascular injury were used to study the cellular mechanisms of scar formation in the arterial wall, and the adaptation of the arterial wall to increased mechanical stress. Results and Interpretation Inflammation and degeneration of the SCAA wall, namely loss of mural cells and degradation of the wall matrix, were found to associate with rupture. Unruptured SCAA walls had structural resemblance with pads of myointimal hyperplasia or so called neointima that characterizes early atherosclerotic lesions, and is the repair and adaptation mechanism of the arterial wall after injury or increased mechanical stress. As in pads of myointimal hyperplasia elsewhere in the vasculature, oxidated LDL was found in the SCAA walls. Immunity against OxLDL was demonstrated in SAH patients with detection of circulating anti-oxidized LDL antibodies, which were significantly associated with the risk of rupture in patients with solitary SCAAs. Growth factor receptors associated with arterial wall remodeling and angiogenesis were more expressed in ruptured SCAA walls. In experimental saccular aneurysm models, capillary growth, arterial wall remodeling and neointima formation were found. The neointimal cells were shown to originate from the experimental aneurysm wall with minor contribution from the adjacent artery, and a negligible contribution of bone marrow-derived neointimal cells. Since loss of mural cells characterizes ruptured human SCAAs and likely impairs the adaptation and repair mechanism of ruptured or rupture-prone SCAAs, we investigated also the hypothesis that bone marrow-derived or circulating neointimal precursor cells could be used to enhance neointima formation and compensate the impaired repair capacity in ruptured SCAA walls. However, significant contribution of bone marrow cells or circulating mononuclear cells to neointima formation was not found.
Resumo:
Atopic dermatitis (AD) or atopic eczema is characterised by a superficial skin inflammation with an overall Th2 cell dominance and impaired function of the epidermal barrier. Patients also are at an increased risk for asthma and allergic rhinitis. Treatment with tacrolimus ointment inhibits T cell activation and blocks the production of several inflammatory cytokines in the skin, without suppressing collagen synthesis. The aims of this thesis were to determine: (1) long-term efficacy, safety, and effects on cell-mediated immunity and serum IgE levels in patients with moderate-to-severe AD treated for 1 year with tacrolimus ointment or a corticosteroid regimen, (2) the 10-year outcome of eczema, respiratory symptoms, and serum IgE levels in AD patients initially treated long-term with tacrolimus ointment, and (3) pharmacokinetics and long-term safety and efficacy of 0.03% tacrolimus ointment in infants under age 2 with AD. Cell-mediated immunity, reflecting Th1 cell reactivity, was measured by recall antigens and was at baseline lower in patients with AD compared to healthy controls. Treatment with either 0.1% tacrolimus ointment or a corticosteroid regimen for one year enhanced recall antigen reactivity. Transepidermal water loss (TEWL), an indicator of skin barrier function, decreased at months 6 and 12 in both tacrolimus- and corticosteroid-treated patients; TEWL for the head and neck was significantly lower in tacrolimus-treated patients. Patients in the 10-year open follow-up study showed a decrease in affected body surface area from a baseline 19.0% to a 10-year 1.6% and those with bronchial hyper-responsiveness at baseline showed an increase in the provocative dose of inhaled histamine producing a 15% decrease in FEV1, indicating less hyper-responsiveness. Respiratory symptoms (asthma and rhinitis) reported by the patient decreased in those with active symptoms at baseline. A good treatment response after one year of tacrolimus treatment predicted a good treatment response throughout the 10-year follow-up and a decrease in total serum IgE levels at the 10-year follow-up visit. The 2-week pharmacokinetic and the long-term study with 0.03% tacrolimus ointment showed good and continuous improvement of AD in the infants. Tacrolimus blood levels were throughout the study low and treatment well tolerated. This thesis underlines the importance of effective long-term topical treatment of AD. When the active skin inflammation decreases, cell-mediated immunity of the skin improves and a secondary marker for Th2 cell reactivity, total serum IgE, decreases. Respiratory symptoms seem to improve when the eczema area decreases. All these effects can be attributed to improvement of skin barrier function. One potential method to prevent a progression from AD to asthma and allergic rhinitis may be avoidance of early sensitisation through the skin, so early treatment of AD in infants is crucial. Long-term treatment with 0.03% tacrolimus ointment was effective and safe in infants over age 3 months.
Resumo:
Most of the genes in the MHC region are involveed in adaptive and innate immunity, with essential function in inflammatory reactions and in protection against infections. These genes might serve as a candidate region for infection and inflammation associated diseases. CAD is an inflammatory disease. The present set of studies was performed to assess whether the MHC region harbors genetic markers for CAD, and whether these genetic markers explain the CAD risk factors: e.g., C. pneumoniae, periodontitis, and periodontal pathogens. Study I was performed using two separate patient materials and age- and sex-matched healthy controls, categorizing them into two independent studies: the HTx and ACS studies. Both studies consistently showed the HLA-A3– B35– DR1 (35 ancestral haplotype) haplotype as a susceptible MHC genetic marker for CAD. HLA-DR1 alone was associated not only with CAD, but also with CAD risk factor diseases, e.g., diabetes mellitus, and hyperlipidemia. The ACS study further showed the HLA-B*07 and -DRB1*15 -related haplotype as a protective MHC haplotype for CAD. Study II showed that patients with CAD showed signs of chronic C. pneumoniae infection when compared to age- and sex-matched healthy controls. HLA-B*35 or -related haplotypes associated with the C. pneumoniae infection markers. Among these haplotype carriers, males and smokers associated with elevated C. pneumoniae infection markers. Study III showed that CAD patients with periodontitis had elevated serum markers of P. gingivalis and occurrence of the pathogen in saliva. LTA+496C strongly associated with periodontitis, while HLA-DRB1*01 with periodontitis and with the elevated serum antibodies of P. gingivalis. Study IV showed that the increased level of C3/C4 ratio was a new risk factor and was associated with recurrent cardiovascular end-points. The increased C3 and decreased C4 concentrations in serum explained the increased level of the C3/C4 ratio. Both the higher than cut-off value (4.53) and the highest quartile of the C3/C4 ratio were also associated with worst survival, increased end-points, and C4 null alleles. The presence of C4 null alleles associated with decreased serum C4 concentration, and increased C3/C4 ratio. In conclusion, the present studies show that the CAD susceptibility haplotype (HLA-A3− B35− DR1 -related haplotypes, Study I) partially explains the development of CAD in patients possessing several recognized and novel risk factors: diabetes mellitus, increased LDL, smoking, C4B*Q0, C. pneumnoiae, periodontitis, P. gingivalis, and complement C3/C4 ratio (Study II, III, and IV).
Resumo:
Though silicon tunnel field effect transistor (TFET) has attracted attention for sub-60 mV/decade subthreshold swing and very small OFF current (IOFF), its practical application is questionable due to low ON current (ION) and complicated fabrication process steps. In this paper, a new n-type classical-MOSFET-alike tunnel FET architecture is proposed, which offers sub-60 mV/decade subthreshold swing along with a significant improvement in ION. The enhancement in ION is achieved by introducing a thin strained SiGe layer on top of the silicon source. Through 2D simulations it is observed that the device is nearly free from short channel effect (SCE) and its immunity towards drain induced barrier lowering (DIBL) increases with increasing germanium mole fraction. It is also found that the body bias does not change the drive current but after body current gets affected. An ION of View the MathML source and a minimum average subthreshold swing of 13 mV/decade is achieved for 100 nm channel length device with 1.2 V supply voltage and 0.7 Ge mole fraction, while maintaining the IOFF in fA range.
Resumo:
The study assessed whether plasma concentrations of complement factors C3, C4, or immunoglobulins, serum classical pathway hemolytyic activity, or polymorphisms in the class I and II HLA genes, isotypes and gene numbers of C4, or allotypes of IgG1 and IgG3 heavy chain genes were associated with severe frequently recurring or chronic mucosal infections. According to strict clinical criteria, 188 consecutive voluntary patients without a known immunodeficiency and 198 control subjects were recruited. Frequencies of low levels in IgG1, IgG2, IgG3 and IgG4 were for the first time tested from adult general population and patients with acute rhinosinusitis. Frequently recurring intraoral herpes simplex type 1 infections, a rare form of the disease, was associated with homozygosity in HLA -A*, -B*, -C*, and -DR* genes. Frequently recurrent genital HSV-2 infections were associated with low levels of IgG1 and IgG3, present in 54% of the recruited patients. This association was partly allotype-dependent. The G3mg,G1ma/ax haplotype, together with low IgG3, was more common in patients than in control subjects who lacked antibodies against herpes simplex viruses. This is the first found immunogenetic deficiency in otherwise healthy adults that predisposes to highly frequent mucosal herpes recurrences. According to previous studies, HSV effectively evades the allotype G1ma/ax of IgG1, whereas G3mg is associated with low IgG3. Certain HLA genes were more common in patients than in control subjects. Having more than one C4A or C4B gene was associated with neuralgias caused by the virus. Low levels of IgA, IgG1, IgG2, IgG3, and IgG4 were common in the general adult population, but even more frequent in patients with chronic sinusitis. Only low IgG1 was more common chronic than in acute rhinosinusitis. Clinically, nasal polyposis and bronchial asthma were associated with complicated disease forms. The best differentiating immunologic parameters were C4A deficiency and the combination of low plasma IgG4 together with low IgG1 or IgG2, performing almost equally. The lack of C4A, IgA, and IgG4, all known to possess anti-inflammatory activity, together with a concurrently impaired immunity caused by low subclass levels, may predispose to chronic disease forms. In severe chronic adult periodontitis, any C4A or C4B deficiency combined was associated with the disease. The new quantitative analysis of C4 genes and the conventional C4 allotyping method complemented each other. Lowered levels of plasma C3 or C4 or both, and serum CH50 were found in herpes and periodontitis patients. In rhinosinusitis, there was a linear trend with the highest levels found in the order: acute > chronic rhinosinusitis > general population > blood donors with no self-reported history of rhinosinusitis. Complement is involved in the defense against the tested mucosal infections. Seemingly immunocompetent patients with chronic or recurrent mucosal infections frequently have subtle weaknesses in different arms of immunity. Their susceptibility to chronic disease forms may be caused by these. Host s subtly impaired immunity often coincides with effective immune evasion from the same arms of immunity by the disease-causing pathogens. The interpretation of low subclass levels, if no additional predisposing immunologic factors are tested, is difficult and of limited value in early diagnosis and treatment.
Resumo:
Liver transplantation is an established therapy for both acute and chronic liver failure. Despite excellent long-term outcome, graft dysfunction remains a problem affecting up to 15-30% of the recipients. The etiology of dysfunction is multifactorial, with ischemia-reperfusion injury regarded as one of the most important contributors. This thesis focuses on the inflammatory response during graft procurement and reperfusion in liver transplantation in adults. Activation of protein C was examined as a potential endogenous anti-inflammatory mechanism. The effects of inflammatory responses on graft function and outcome were investigated. Seventy adult patients undergoing liver transplantation in Helsinki University Central Hospital, and 50 multiorgan donors, were studied. Blood samples from the portal and the hepatic veins were drawn before graft procurement and at several time points during graft reperfusion to assess changes within the liver. Liver biopsies were taken before graft preservation and after reperfusion. Neutrophil and monocyte CD11b and L-selectin expression were analysed by flow cytometry. Plasma TNF-α, IL-6, IL-8, sICAM-1, and HMGB1 were determined by ELISA and Western-blotting. HMGB1 immunohistochemistry was performed on liver tissue specimens. Plasma protein C and activated protein C were determined by an enzyme-capture assay. Hepatic IL-8 release during graft procurement was associated with subsequent graft dysfunction, biliary in particular, in the recipient. Biliary marker levels increased only 5 7 days after transplantation. Thus, donor inflammatory response appears to influence recipient liver function with relatively long-lasting effects. Hepatic phagocyte activation and sequestration, with concomitant HMGB1 release, occurred during reperfusion. Neither phagocyte activation nor plasma cytokines correlated with postoperative graft function. Thus, activation of the inflammatory responses within the liver during reperfusion may be of minor clinical significance. However, HMGB1 was released from hepatocytes and were also correlated with postoperative transaminase levels. Accordingly, HMGB1 appears to be a marker of hepatocellular injury.
Resumo:
The impact of host immunity on outcome in nonsmall cell lung cancer (NSCLC) is controversial. We examined the relationship between lymphoid infiltration patterns in NSCLC and prognosis. Tumour- and stroma-infiltrating CD3+, CD8+ and forkhead box P3 (Foxp3)+ T-lymphocytes were identified using immunohistochemistry and a novel image analysis algorithm to assess total, cytotoxic and regulatory T-lymphocyte counts, respectively, in 196 NSCLC cases. The median cell count was selected as a cut-point to define patient subgroups and the ratio of the corresponding tumour islet:stroma (TI/S) counts was determined. There was a positive association between overall survival and increased CD8+ TI/S ratio (hazard ratio (HR) for death 0.44, p<0.001) but an inverse relationship between Foxp3+ TI/S ratio and overall survival (HR 4.86, p<0.001). Patients with high CD8+ islet (HR 0.48, p<0.001) and Foxp3+ stromal (HR 0.23, p<0.001) counts had better survival, whereas high CD3+ and CD8+ stromal counts and high Foxp3+ islet infiltration conferred a worse survival (HR 1.55, 2.19 and 3.14, respectively). By multivariate analysis, a high CD8+ TI/S ratio conferred an improved survival (HR 0.48, p=0.002) but a high Foxp3+ TI/S ratio was associated with worse survival (HR 3.91, p<0.001). Microlocalisation of infiltrating T-lymphocytes is a powerful predictor of outcome in resected NSCLC.
Resumo:
In this paper the static noise margin for SET (single electron transistor) logic is defined and compact models for the noise margin are developed by making use of the MIB (Mahapatra-Ionescu-Banerjee) model. The variation of the noise margin with temperature and background charge is also studied. A chain of SET inverters is simulated to validate the definition of various logic levels (like VIH, VOH, etc.) and noise margin. Finally the noise immunity of SET logic is compared with current CMOS logic.
Resumo:
Interferon-gamma (IFN gamma) is a central regulator of the immune response and signals via the Janus Activated Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT) pathway. Phosphorylated STAT1 homodimers translocate to the nucleus, bind to Gamma Activating Sequence (GAS) and recruit additional factors to modulate gene expression. A bioinformatics analysis revealed that greater number of putative promoters of immune related genes and also those not directly involved in immunity contain GAS compared to response elements (RE) for Interferon Regulatory Factor (IRF)1, Nuclear factor kappa B (NF kappa B) and Activator Protein (AP)1. GAS is present in putative promoters of well known IFN gamma-induced genes, IRF1, GBP1, CXCL10, and other genes identified were TLR3, VCAM1, CASP4, etc. Analysis of three microarray studies revealed that the expression of asubset of only GAS containing immune genes were modulated by IFN gamma. As a significant correlation exists between GAS containing immune genes and IFN gamma-regulated gene expression, this strategy may identify novel IFN gamma-responsive immune genes. This analysis is integrated with the literature on the roles of IFN gamma in mediating a plethoraof functions: anti-microbial responses, antigen processing,inflammation, growth suppression, cell death, tumor immunity and autoimmunity. Overall, this review summarizes our present knowledge onIFN gamma mediated signaling and functions. (C) 2009 Elsevier Ltd. All rights reserved.