802 resultados para edge classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les protéines sont les produits finaux de la machinerie génétique. Elles jouent des rôles essentiels dans la définition de la structure, de l'intégrité et de la dynamique de la cellule afin de promouvoir les diverses transformations chimiques requises dans le métabolisme et dans la transmission des signaux biochimique. Nous savons que la doctrine centrale de la biologie moléculaire: un gène = un ARN messager = une protéine, est une simplification grossière du système biologique. En effet, plusieurs ARN messagers peuvent provenir d’un seul gène grâce à l’épissage alternatif. De plus, une protéine peut adopter plusieurs fonctions au courant de sa vie selon son état de modification post-traductionelle, sa conformation et son interaction avec d’autres protéines. La formation de complexes protéiques peut, en elle-même, être déterminée par l’état de modifications des protéines influencées par le contexte génétique, les compartiments subcellulaires, les conditions environmentales ou être intrinsèque à la croissance et la division cellulaire. Les complexes protéiques impliqués dans la régulation du cycle cellulaire sont particulièrement difficiles à disséquer car ils ne se forment qu’au cours de phases spécifiques du cycle cellulaire, ils sont fortement régulés par les modifications post-traductionnelles et peuvent se produire dans tous les compartiments subcellulaires. À ce jour, aucune méthode générale n’a été développée pour permettre une dissection fine de ces complexes macromoléculaires. L'objectif de cette thèse est d'établir et de démontrer une nouvelle stratégie pour disséquer les complexes protéines formés lors du cycle cellulaire de la levure Saccharomyces cerevisiae (S. cerevisiae). Dans cette thèse, je décris le développement et l'optimisation d'une stratégie simple de sélection basée sur un essai de complémentation de fragments protéiques en utilisant la cytosine déaminase de la levure comme sonde (PCA OyCD). En outre, je décris une série d'études de validation du PCA OyCD afin de l’utiliser pour disséquer les mécanismes d'activation des facteurs de transcription et des interactions protéine-protéines (IPPs) entre les régulateurs du cycle cellulaire. Une caractéristique clé du PCA OyCD est qu'il peut être utilisé pour détecter à la fois la formation et la dissociation des IPPs et émettre un signal détectable (la croissance des cellules) pour les deux types de sélections. J'ai appliqué le PCA OyCD pour disséquer les interactions entre SBF et MBF, deux facteurs de transcription clés régulant la transition de la phase G1 à la phase S. SBF et MBF sont deux facteurs de transcription hétérodimériques composés de deux sous-unités : une protéine qui peut lier directement l’ADN (Swi4 ou Mbp1, respectivement) et une protéine commune contenant un domain d’activation de la transcription appelée Swi6. J'ai appliqué le PCA OyCD afin de générer un mutant de Swi6 qui restreint ses activités transcriptionnelles à SBF, abolissant l’activité MBF. Nous avons isolé des souches portant des mutations dans le domaine C-terminal de Swi6, préalablement identifié comme responsable dans la formation de l’interaction avec Swi4 et Mbp1, et également important pour les activités de SBF et MBF. Nos résultats appuient un modèle où Swi6 subit un changement conformationnel lors de la liaison à Swi4 ou Mbp1. De plus, ce mutant de Swi6 a été utilisé pour disséquer le mécanisme de régulation de l’entrée de la cellule dans un nouveau cycle de division cellulaire appelé « START ». Nous avons constaté que le répresseur de SBF et MBF nommé Whi5 se lie directement au domaine C-terminal de Swi6. Finalement, j'ai appliqué le PCA OyCD afin de disséquer les complexes protéiques de la kinase cycline-dépendante de la levure nommé Cdk1. Cdk1 est la kinase essentielle qui régule la progression du cycle cellulaire et peut phosphoryler un grand nombre de substrats différents en s'associant à l'une des neuf protéines cycline régulatrice (Cln1-3, Clb1-6). Je décris une stratégie à haut débit, voir à une échelle génomique, visant à identifier les partenaires d'interaction de Cdk1 et d’y associer la cycline appropriée(s) requise(s) à l’observation d’une interaction en utilisant le PCA OyCD et des souches délétées pour chacune des cyclines. Mes résultats nous permettent d’identifier la phase(s) du cycle cellulaire où Cdk1 peut phosphoryler un substrat particulier et la fonction potentielle ou connue de Cdk1 pendant cette phase. Par exemple, nous avons identifié que l’interaction entre Cdk1 et la γ-tubuline (Tub4) est dépendante de Clb3. Ce résultat est conforme au rôle de Tub4 dans la nucléation et la croissance des faisceaux mitotiques émanant des centromères. Cette stratégie peut également être appliquée à l’étude d'autres IPPs qui sont contrôlées par des sous-unités régulatrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durant les dernières décennies, l’occurrence des catastrophes naturelles a été fortement à la hausse. En effet, les catastrophes naturelles sont devenues de plus en plus fréquentes. En fait, ces risques dévastateurs ont touché durant les années précédentes différents pays dans des zones très diversifiées et continueront très probablement à être de réelles menaces dans le monde. Puisqu’aucun pays n’est à l’abri des catastrophes naturelles, il s’avère alors utile d’étudier les facteurs déterminants de leur survenue notamment avec la restriction de leurs périodes de retour et donc l’augmentation de leurs chances d’occurrence. Il nous a donc semblé opportun de tester les facteurs sous-jacents de la survenue des catastrophes naturelles. Notre travail se base sur l’application d’un réseau neuronal de type perceptron multicouche pour prédire le nombre des catastrophes naturelles à partir des variables les plus connues théoriquement. Ainsi, nous allons utiliser ce modèle neuronal pour effectuer l’analyse de sensitivité. Cette dernière permet de classer les variables explicatives selon l’importance de leur contribution dans la détermination du nombre de catastrophes naturelles comptabilisées durant la période d’étude. Les résultats obtenus ont montré que le réseau retenu peut prédire le nombre des catastrophes naturelles. De même, les différentes variables possèdent un effet considérable sur la sortie du réseau neuronal mais selon différents ordres d’importance. De ce fait, toutes ces variables contribuent à l’explication d’un problème aussi complexe comme la survenue des catastrophes naturelles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’objectif de notre travail est de développer un outil d’analyse automatique des stades du sommeil basé sur les réseaux de neurones artificiels (RNA). Dans ce papier nous présentons notre démarche pour la conception de cet outil. La première difficulté consiste dans le choix de la représentation des signaux physiologiques et en particulier de l’électroencéphalogramme (EEG). Une fois la représentation adoptée, l’étape suivante est la conception du réseau de neurones optimal déterminé par un processus d’apprentissage et de validation sur les données issues d’un ensemble d'enregistrements de nuits de sommeil. Le résultat obtenu avec un taux de 63% de bonne classification pour six stades, nous incite à approfondir l’étude de cette problématique aux niveaux représentation et conception pour améliorer les performances de notre outil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Travail réalisé à l'École de bibliothéconomie et des sciences de l'information (EBSI), Université de Montréal, sous la direction de Mme Audrey Laplante dans le cadre du cours SCI6850 Recherche individuelle, à l'automne 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les milieux humides remplissent plusieurs fonctions écologiques d’importance et contribuent à la biodiversité de la faune et de la flore. Même s’il existe une reconnaissance croissante sur l’importante de protéger ces milieux, il n’en demeure pas moins que leur intégrité est encore menacée par la pression des activités humaines. L’inventaire et le suivi systématique des milieux humides constituent une nécessité et la télédétection est le seul moyen réaliste d’atteindre ce but. L’objectif de cette thèse consiste à contribuer et à améliorer la caractérisation des milieux humides en utilisant des données satellites acquises par des radars polarimétriques en bande L (ALOS-PALSAR) et C (RADARSAT-2). Cette thèse se fonde sur deux hypothèses (chap. 1). La première hypothèse stipule que les classes de physionomies végétales, basées sur la structure des végétaux, sont plus appropriées que les classes d’espèces végétales car mieux adaptées au contenu informationnel des images radar polarimétriques. La seconde hypothèse stipule que les algorithmes de décompositions polarimétriques permettent une extraction optimale de l’information polarimétrique comparativement à une approche multipolarisée basée sur les canaux de polarisation HH, HV et VV (chap. 3). En particulier, l’apport de la décomposition incohérente de Touzi pour l’inventaire et le suivi de milieux humides est examiné en détail. Cette décomposition permet de caractériser le type de diffusion, la phase, l’orientation, la symétrie, le degré de polarisation et la puissance rétrodiffusée d’une cible à l’aide d’une série de paramètres extraits d’une analyse des vecteurs et des valeurs propres de la matrice de cohérence. La région du lac Saint-Pierre a été sélectionnée comme site d’étude étant donné la grande diversité de ses milieux humides qui y couvrent plus de 20 000 ha. L’un des défis posés par cette thèse consiste au fait qu’il n’existe pas de système standard énumérant l’ensemble possible des classes physionomiques ni d’indications précises quant à leurs caractéristiques et dimensions. Une grande attention a donc été portée à la création de ces classes par recoupement de sources de données diverses et plus de 50 espèces végétales ont été regroupées en 9 classes physionomiques (chap. 7, 8 et 9). Plusieurs analyses sont proposées pour valider les hypothèses de cette thèse (chap. 9). Des analyses de sensibilité par diffusiogramme sont utilisées pour étudier les caractéristiques et la dispersion des physionomies végétales dans différents espaces constitués de paramètres polarimétriques ou canaux de polarisation (chap. 10 et 12). Des séries temporelles d’images RADARSAT-2 sont utilisées pour approfondir la compréhension de l’évolution saisonnière des physionomies végétales (chap. 12). L’algorithme de la divergence transformée est utilisé pour quantifier la séparabilité entre les classes physionomiques et pour identifier le ou les paramètres ayant le plus contribué(s) à leur séparabilité (chap. 11 et 13). Des classifications sont aussi proposées et les résultats comparés à une carte existante des milieux humide du lac Saint-Pierre (14). Finalement, une analyse du potentiel des paramètres polarimétrique en bande C et L est proposé pour le suivi de l’hydrologie des tourbières (chap. 15 et 16). Les analyses de sensibilité montrent que les paramètres de la 1re composante, relatifs à la portion dominante (polarisée) du signal, sont suffisants pour une caractérisation générale des physionomies végétales. Les paramètres des 2e et 3e composantes sont cependant nécessaires pour obtenir de meilleures séparabilités entre les classes (chap. 11 et 13) et une meilleure discrimination entre milieux humides et milieux secs (chap. 14). Cette thèse montre qu’il est préférable de considérer individuellement les paramètres des 1re, 2e et 3e composantes plutôt que leur somme pondérée par leurs valeurs propres respectives (chap. 10 et 12). Cette thèse examine également la complémentarité entre les paramètres de structure et ceux relatifs à la puissance rétrodiffusée, souvent ignorée et normalisée par la plupart des décompositions polarimétriques. La dimension temporelle (saisonnière) est essentielle pour la caractérisation et la classification des physionomies végétales (chap. 12, 13 et 14). Des images acquises au printemps (avril et mai) sont nécessaires pour discriminer les milieux secs des milieux humides alors que des images acquises en été (juillet et août) sont nécessaires pour raffiner la classification des physionomies végétales. Un arbre hiérarchique de classification développé dans cette thèse constitue une synthèse des connaissances acquises (chap. 14). À l’aide d’un nombre relativement réduit de paramètres polarimétriques et de règles de décisions simples, il est possible d’identifier, entre autres, trois classes de bas marais et de discriminer avec succès les hauts marais herbacés des autres classes physionomiques sans avoir recours à des sources de données auxiliaires. Les résultats obtenus sont comparables à ceux provenant d’une classification supervisée utilisant deux images Landsat-5 avec une exactitude globale de 77.3% et 79.0% respectivement. Diverses classifications utilisant la machine à vecteurs de support (SVM) permettent de reproduire les résultats obtenus avec l’arbre hiérarchique de classification. L’exploitation d’une plus forte dimensionalitée par le SVM, avec une précision globale maximale de 79.1%, ne permet cependant pas d’obtenir des résultats significativement meilleurs. Finalement, la phase de la décomposition de Touzi apparaît être le seul paramètre (en bande L) sensible aux variations du niveau d’eau sous la surface des tourbières ouvertes (chap. 16). Ce paramètre offre donc un grand potentiel pour le suivi de l’hydrologie des tourbières comparativement à la différence de phase entre les canaux HH et VV. Cette thèse démontre que les paramètres de la décomposition de Touzi permettent une meilleure caractérisation, de meilleures séparabilités et de meilleures classifications des physionomies végétales des milieux humides que les canaux de polarisation HH, HV et VV. Le regroupement des espèces végétales en classes physionomiques est un concept valable. Mais certaines espèces végétales partageant une physionomie similaire, mais occupant un milieu différent (haut vs bas marais), ont cependant présenté des différences significatives quant aux propriétés de leur rétrodiffusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pre-publication drafts are reproduced with permission and copyright © 2013 of the Journal of Orthopaedic Trauma [Mutch J, Rouleau DM, Laflamme GY, Hagemeister N. Accurate Measurement of Greater Tuberosity Displacement without Computed Tomography: Validation of a method on Plain Radiography to guide Surgical Treatment. J Orthop Trauma. 2013 Nov 21: Epub ahead of print.] and copyright © 2014 of the British Editorial Society of Bone and Joint Surgery [Mutch JAJ, Laflamme GY, Hagemeister N, Cikes A, Rouleau DM. A new morphologic classification for greater tuberosity fractures of the proximal humerus: validation and clinical Implications. Bone Joint J 2014;96-B:In press.]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les écologistes reconnaissent depuis longtemps que les organismes sont soutenus par le flux, l’emmagasinage et le renouvellement d’énergie et de matériel de l’écosystème, puisqu’ils sont nécessaires au métabolisme biologique et à la construction de biomasse. L’importance des organismes dans la régularisation des processus écosystémiques est maintenant de plus en plus considérée. Situé au centre des chaînes trophiques aquatiques, le zooplancton influence les flux d’énergie et de matériel dans les écosystèmes. Plusieurs de leurs caractéristiques sont connues comme étant de bons indicateurs de leur effet sur l’environnement, notamment leur taille, contenu corporel et taux métabolique. La plupart de ces caractéristiques peuvent être appelées « traits fonctionnels ». Alors que l’emploi des traits devient de plus en plus populaire en écologie des communautés aquatiques, peu ont su utiliser cette approche afin de concrètement lier la structure des communautés zooplanctoniques aux processus écosystémiques. Dans cette étude, nous avons colligé les données provenant d’une grande variété de littérature afin de construire une base de données sur les traits du zooplancton crustacé contribuant directement ou indirectement aux flux de C, N et P dans les écosystèmes. Notre méta-analyse a permis d’assembler plus de 9000 observations sur 287 espèces et d’identifier par le fait même ce qu’il manque à nos connaissances. Nous avons examiné une série de corrélations croisées entre 16 traits, dont 35 étaient significatives, et avons exploré les relations entre les unités taxonomiques de même qu’entre les espèces marines et d’eaux douces. Notre synthèse a entre autres révélé des patrons significativement différents entre le zooplancton marin et dulcicole quant à leur taux de respiration et leur allométrie (masse vs. longueur corporelle). Nous proposons de plus une nouvelle classification de traits liant les fonctions des organismes à celles de l’écosystème. Notre but est d’offrir une base de données sur les traits du zooplancton, des outils afin de mieux lier les organismes aux processus écosystémiques et de stimuler la recherche de patrons généraux et de compromis entre les traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans l'apprentissage machine, la classification est le processus d’assigner une nouvelle observation à une certaine catégorie. Les classifieurs qui mettent en œuvre des algorithmes de classification ont été largement étudié au cours des dernières décennies. Les classifieurs traditionnels sont basés sur des algorithmes tels que le SVM et les réseaux de neurones, et sont généralement exécutés par des logiciels sur CPUs qui fait que le système souffre d’un manque de performance et d’une forte consommation d'énergie. Bien que les GPUs puissent être utilisés pour accélérer le calcul de certains classifieurs, leur grande consommation de puissance empêche la technologie d'être mise en œuvre sur des appareils portables tels que les systèmes embarqués. Pour rendre le système de classification plus léger, les classifieurs devraient être capable de fonctionner sur un système matériel plus compact au lieu d'un groupe de CPUs ou GPUs, et les classifieurs eux-mêmes devraient être optimisés pour ce matériel. Dans ce mémoire, nous explorons la mise en œuvre d'un classifieur novateur sur une plate-forme matérielle à base de FPGA. Le classifieur, conçu par Alain Tapp (Université de Montréal), est basé sur une grande quantité de tables de recherche qui forment des circuits arborescents qui effectuent les tâches de classification. Le FPGA semble être un élément fait sur mesure pour mettre en œuvre ce classifieur avec ses riches ressources de tables de recherche et l'architecture à parallélisme élevé. Notre travail montre que les FPGAs peuvent implémenter plusieurs classifieurs et faire les classification sur des images haute définition à une vitesse très élevée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaque jour, des décisions doivent être prises quant à la quantité d'hydroélectricité produite au Québec. Ces décisions reposent sur la prévision des apports en eau dans les bassins versants produite à l'aide de modèles hydrologiques. Ces modèles prennent en compte plusieurs facteurs, dont notamment la présence ou l'absence de neige au sol. Cette information est primordiale durant la fonte printanière pour anticiper les apports à venir, puisqu'entre 30 et 40% du volume de crue peut provenir de la fonte du couvert nival. Il est donc nécessaire pour les prévisionnistes de pouvoir suivre l'évolution du couvert de neige de façon quotidienne afin d'ajuster leurs prévisions selon le phénomène de fonte. Des méthodes pour cartographier la neige au sol sont actuellement utilisées à l'Institut de recherche d'Hydro-Québec (IREQ), mais elles présentent quelques lacunes. Ce mémoire a pour objectif d'utiliser des données de télédétection en micro-ondes passives (le gradient de températures de brillance en position verticale (GTV)) à l'aide d'une approche statistique afin de produire des cartes neige/non-neige et d'en quantifier l'incertitude de classification. Pour ce faire, le GTV a été utilisé afin de calculer une probabilité de neige quotidienne via les mélanges de lois normales selon la statistique bayésienne. Par la suite, ces probabilités ont été modélisées à l'aide de la régression linéaire sur les logits et des cartographies du couvert nival ont été produites. Les résultats des modèles ont été validés qualitativement et quantitativement, puis leur intégration à Hydro-Québec a été discutée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. The edge C4 graph E4(G) of a graph G has all the edges of Gas its vertices, two vertices in E4(G) are adjacent if their corresponding edges in G are either incident or are opposite edges of some C4. In this paper, characterizations for E4(G) being connected, complete, bipartite, tree etc are given. We have also proved that E4(G) has no forbidden subgraph characterization. Some dynamical behaviour such as convergence, mortality and touching number are also studied