966 resultados para dynamic methods
Resumo:
Objectives. To evaluate the effect of the microstructure on the Weibull and slow crack growth (SCG) parameters and on the lifetime of three ceramics used as framework materials for fixed partial dentures (FPDs) (YZ - Vita In-Ceram YZ; IZ - Vita In-Ceram Zirconia; AL - Vita In-Ceram AL) and of two veneering porcelains (VM7 and VM9). Methods. Bar-shaped specimens were fabricated according to the manufacturer`s instructions. Specimens were tested in three-point flexure in 37 degrees C artificial saliva. Weibull analysis (n = 30) and a constant stress-rate test (n = 10) were used to determine the Weibull modulus (m) and SCG coefficient (n), respectively. Microstructural and fractographic analyzes were performed using SEM. ANOVA and Tukey`s test (alpha = 0.05) were used to statistically analyze data obtained with both microstructural and fractographic analyzes. Results. YZ and AL presented high crystalline content and low porosity (0.1-0.2%). YZ had the highest characteristic strength (sigma(0)) value (911 MPa) followed by AL (488 MPa) and IZ (423 MPa). Lower sigma(0) values were observed for the porcelains (68-75 MPa). Except for IZ and VM7, m values were similar among the ceramic materials. Higher n values were found for YZ (76) and AL (72), followed by IZ (54) and the veneering materials (36-44). Lifetime predictions showed that YZ was the material with the best mechanical performance. The size of the critical flaw was similar among the framework materials (34-48 mu m) and among the porcelains (75-86 mu m). Significance. The microstructure influenced the mechanical and SCG behavior of the studied materials and, consequently, the lifetime predictions. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this in vitro study was to evaluate alterations in the surface roughness and micromorphology of human enamel submitted to three prophylaxis methods. Sixty-nine caries-free molars with exposed labial surfaces were divided into three groups. Group I was treated with a rotary instrument set at a low speed, rubber clip and a mixture of water and pumice; group II with a rotary instrument set at a low speed, rubber cup and prophylaxis paste Herjos-F (Vigodent S/A Industria e Comercio, Rio de Janeiro, Brazil); and group III with sodium bicarbonate spray Profi II Ceramic (Dabi A dante Indtistrias Medico Odontologicas Ltda, Ribeirao Preto, Brazil). All procedures were performed by the same operator for 10 s, and samples were rinsed and stored in distilled water. Pre and post-treatment surface evaluation was completed using a surface profilometer (Perthometer S8P Marh, Perthen, Germany) in 54 samples. In addition, the other samples were coated with gold and examined in a scanning electron microscope (SEM). The results of this study were statistically analyzed with the paired t-test (Student), the Kruskal-Wallis test and the Dunn (5%) test. The sodium bicarbonate spray led to significantly rougher surfaces than the pumice paste. The use of prophylaxis paste showed no statistically significant difference when compared with the other methods. Based on SEM analysis, the sodium bicarbonate spray presented an irregular surface with granular material and erosions. Based on this study, it can be concluded that there was an increased enamel stuface roughness when teeth were treated with sodium bicarbonate spray when compared with teeth treated with pumice paste.
Resumo:
Objectives. To evaluate the effect of pH of storage medium on slow crack growth (SCG) parameters of dental porcelains. Methods. Two porcelains were selected: with (UD) and without (VM7) leucite particles, in order to assess if the microstructure would affect the response of the material to the pH variation. Disc specimens were produced following manufacturers` instructions. Specimens were stored in artificial saliva in pHs 3.5, 7.0 or 10.0 for 10 days and after that the fatigue parameters (n: SCG susceptibility coefficient and sigma(0): scaling parameter) were obtained by the dynamic fatigue test using the same pH of storage. Microstructural analysis of the materials was also performed. Results. For VM7, the values of n obtained in the different pHs were similar and varied from 29.9 to 31.2. The sigma(0) value obtained in pH 7.0 for VM7 was higher than that obtained in the other pHs, which were similar. For porcelain UD, n values obtained in pHs 7.0 and 10.0 were similar (40.8 and 39.6, respectively), and higher than that obtained in pH 3.5 (26.5). With respect to sigma(0), the value obtained for porcelain UD in pH 10.0 was lower than those obtained in pHs 3.5 and 7.0, which were similar. Significance. The effect of pH on the stress corrosion susceptibility (n) depended on the porcelain studied. While the n value of VM7 was not affected by the pH, UD presented lower n value in acid pH. For both porcelains, storage in acid or basic pH resulted in strength degradation. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. To investigate the contributions of BisGMA:TEGDMA and filler content on polymerization stress, along with the influence of variables associated with stress development, namely, degree of conversion, reaction rate, shrinkage, elastic modulus and loss tangent for a series of experimental dental composites. Methods. Twenty formulations with BisGMA: TEGDMA ratios of 3: 7, 4: 6, 5: 5, 6: 4 and 7: 3 and barium glass filler levels of 40, 50, 60 or 70 wt% were studied. Polymerization stress was determined in a tensilometer, inserting the composite between acrylic rods fixed to clamps of a universal test machine and dividing the maximum load recorded by the rods cross-sectional area. Conversion and reaction rate were determined by infra-red spectroscopy. Shrinkage was measured by mercury dilatometer. Modulus was obtained by three-point bending. Loss tangent was determined by dynamic nanoindentation. Regression analyses were performed to estimate the effect of organic and inorganic contents on each studied variable, while a stepwise forward regression identified significant variables for polymerization stress. Results. All variables showed dependence on inorganic concentration and monomeric content. The resin matrix showed a stronger influence on polymerization stress, conversion and reaction rate, whereas filler fraction showed a stronger influence on shrinkage, modulus and loss tangent. Shrinkage and conversion were significantly related to polymerization stress. Significance. Both the inorganic filler concentration and monomeric content affect polymerization stress, but the stronger influence of the resin matrix suggests that it may be possible to reduce stress by modifying resin composition without sacrificing filler content. The main challenge is to develop formulations with low shrinkage without sacrificing degree of conversion. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fluorides and chlorhexidine are technologies that are 65 and 40 years old, respectively. This overview argues that current methods of caries prevention are not effective for the high caries risk patient. In this review examples, arguments and recommendations are provided to address the high caries risk patient that include: failure of comprehensive chemical modalities treatments to address the high caries risk patient; ecological alteration - would this be an effective approach?; and biomaterials and oral microbiome research to address the high caries risk patient.
Resumo:
Reports experimental results involving 204 members of the public who were asked their willingness to pay for the conservation of the mahogany glider Petaurus gracilis on three occasions: prior to information being provided to them about the glider and other wildlife species; after such information was provided, and after participants had an opportunity to see live specimens of this endangered species. Variations in the mean willingness to pay are analysed. Concerns arise about whether information provision and experience reveal ‘true’ contingent valuations of public goods and about the choice of the relevant contingent valuation measure.
Resumo:
In this paper we discuss implicit Taylor methods for stiff Ito stochastic differential equations. Based on the relationship between Ito stochastic integrals and backward stochastic integrals, we introduce three implicit Taylor methods: the implicit Euler-Taylor method with strong order 0.5, the implicit Milstein-Taylor method with strong order 1.0 and the implicit Taylor method with strong order 1.5. The mean-square stability properties of the implicit Euler-Taylor and Milstein-Taylor methods are much better than those of the corresponding semi-implicit Euler and Milstein methods and these two implicit methods can be used to solve stochastic differential equations which are stiff in both the deterministic and the stochastic components. Numerical results are reported to show the convergence properties and the stability properties of these three implicit Taylor methods. The stability analysis and numerical results show that the implicit Euler-Taylor and Milstein-Taylor methods are very promising methods for stiff stochastic differential equations.
Resumo:
We establish existence of solutions for a finite difference approximation to y = f(x, y, y ') on [0, 1], subject to nonlinear two-point Sturm-Liouville boundary conditions of the form g(i)(y(i),y ' (i)) = 0, i = 0, 1, assuming S satisfies one-sided growth bounds with respect to y '. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Objectives. The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other. Methods. Different light-curing protocols were used in order to investigate the influence of energy density (ED), power density (PD), and mode of cure on the properties. The modes of cure were continuous, pulse-delay, and stepped irradiation. DC was measured by Raman micro-spectroscopy. C was determined by pycnometry and a density column. E was measured by a dynamic mechanical analyzer (DMA), and T(g) was measured by differential scanning calorimetry (DSC). Data were submitted to two-and three-way ANOVA, and linear regression analyses. Results. ED, PD, and mode of cure influenced DC, C, E, and T(g) of the polymer. A significant positive correlation was found between ED and DC (r = 0.58), ED and E (r = 0.51), and ED and T(g) (r = 0.44). Taken together, ED and PD were significantly related to DC and E. The regression coefficient was positive for ED and negative for PD. Significant positive correlations were detected between DC and C (r = 0.54), DC and E (r = 0.61), and DC and T(g) (r = 0.53). Comparisons between continuous and pulse-delay modes of cure showed significant influence of mode of cure: pulse-delay curing resulted in decreased DC, decreased C, and decreased T(g). Influence of mode of cure, when comparing continuous and step modes of cure, was more ambiguous. A complex relationship exists between curing protocol, microstructure of the resin and the investigated properties. The overall performance of a composite is thus indirectly affected by the curing protocol adopted, and the desired reduction of C may be in fact a consequence of the decrease in DC. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
A question is examined as to estimates of the norms of perturbations of a linear stable dynamic system, under which the perturbed system remains stable in a situation R:here a perturbation has a fixed structure.
Resumo:
In this paper we discuss implicit methods based on stiffly accurate Runge-Kutta methods and splitting techniques for solving Stratonovich stochastic differential equations (SDEs). Two splitting techniques: the balanced splitting technique and the deterministic splitting technique, are used in this paper. We construct a two-stage implicit Runge-Kutta method with strong order 1.0 which is corrected twice and no update is needed. The stability properties and numerical results show that this approach is suitable for solving stiff SDEs. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.