944 resultados para drug targets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first line medication for mild to moderate Alzheimer s disease (AD) is based on cholinesterase inhibitors which prolong the effect of the neurotransmitter acetylcholine in cholinergic nerve synapses which relieves the symptoms of the disease. Implications of cholinesterases involvement in disease modifying processes has increased interest in this research area. The drug discovery and development process is a long and expensive process that takes on average 13.5 years and costs approximately 0.9 billion US dollars. Drug attritions in the clinical phases are common due to several reasons, e.g., poor bioavailability of compounds leading to low efficacy or toxic effects. Thus, improvements in the early drug discovery process are needed to create highly potent non-toxic compounds with predicted drug-like properties. Nature has been a good source for the discovery of new medicines accounting for around half of the new drugs approved to market during the last three decades. These compounds are direct isolates from the nature, their synthetic derivatives or natural mimics. Synthetic chemistry is an alternative way to produce compounds for drug discovery purposes. Both sources have pros and cons. The screening of new bioactive compounds in vitro is based on assaying compound libraries against targets. Assay set-up has to be adapted and validated for each screen to produce high quality data. Depending on the size of the library, miniaturization and automation are often requirements to reduce solvent and compound amounts and fasten the process. In this contribution, natural extract, natural pure compound and synthetic compound libraries were assessed as sources for new bioactive compounds. The libraries were screened primarily for acetylcholinesterase inhibitory effect and secondarily for butyrylcholinesterase inhibitory effect. To be able to screen the libraries, two assays were evaluated as screening tools and adapted to be compatible with special features of each library. The assays were validated to create high quality data. Cholinesterase inhibitors with various potencies and selectivity were found in natural product and synthetic compound libraries which indicates that the two sources complement each other. It is acknowledged that natural compounds differ structurally from compounds in synthetic compound libraries which further support the view of complementation especially if a high diversity of structures is the criterion for selection of compounds in a library.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension is a major risk factor for stroke, ischaemic heart disease, and the development of heart failure. Hypertension-induced heart failure is usually preceded by the development of left ventricular hypertrophy (LVH), which represents an adaptive and compensatory response to the increased cardiac workload. Biomechanical stress and neurohumoral activation are the most important triggers of pathologic hypertrophy and the transition of cardiac hypertrophy to heart failure. Non-clinical and clinical studies have also revealed derangements of energy metabolism in hypertensive heart failure. The goal of this study was to investigate in experimental models the molecular mechanisms and signalling pathways involved in hypertension-induced heart failure with special emphasis on local renin-angiotensin-aldosterone system (RAAS), cardiac metabolism, and calcium sensitizers, a novel class of inotropic agents used currently in the treatment of acute decompensated heart failure. Two different animal models of hypertensive heart failure were used in the present study, i.e. hypertensive and salt-sensitive Dahl/Rapp rats on a high salt diet (a salt-sensitive model of hypertensive heart failure) and double transgenic rats (dTGR) harboring human renin and human angiotensinogen genes (a transgenic model of hypertensive heart failure with increased local RAAS activity). The influence of angiotensin II (Ang II) on cardiac substrate utilization and cardiac metabolomic profile was investigated by using gas chromatography coupled to time-of-flight mass spectrometry to detect 247 intermediary metabolites. It was found that Ang II could alter cardiac metabolomics both in normotensive and hypertensive rats in an Ang II receptor type 1 (AT1)-dependent manner. A distinct substrate use from fatty acid oxidation towards glycolysis was found in dTGR. Altered cardiac substrate utilization in dTGR was associated with mitochondrial dysfunction. Cardiac expression of the redox-sensitive metabolic sensor sirtuin1 (SIRT1) was increased in dTGR. Resveratrol supplementation prevented cardiovascular mortality and ameliorated Ang II-induced cardiac remodeling in dTGR via blood pressure-dependent pathways and mechanisms linked to increased mitochondrial biogenesis. Resveratrol dose-dependently increased SIRT1 activity in vitro. Oral levosimendan treatment was also found to improve survival and systolic function in dTGR via blood pressure-independent mechanisms, and ameliorate Ang II-induced coronary and cardiomyocyte damage. Finally, using Dahl/Rapp rats it was demonstrated that oral levosimendan as well as the AT1 receptor antagonist valsartan improved survival and prevented cardiac remodeling. The beneficial effects of levosimendan were associated with improved diastolic function without significantly improved systolic changes. These positive effects were potentiated when the drug combination was administered. In conclusion, the present study points to an important role for local RAAS in the pathophysiology of hypertension-induced heart failure as well as its involvement as a regulator of cardiac substrate utilization and mitochondrial function. Our findings suggest a therapeutic role for natural polyphenol resveratrol and calcium sensitizer, levosimendan, and the novel drug combination of valsartan and levosimendan, in prevention of hypertension-induced heart failure. The present study also provides a better understanding of the pathophysiology of hypertension-induced heart failure, and may help identify potential targets for novel therapeutic interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterial spheroplasts were prepared by treatment of the glycinesensitized cells with a combination of lipase and lysozyme. They were stable for several hours at room temperature but were lysed on treatment with 0.1% sodium dodecyl sulfate. The spheroplasts could be regenerated on a suitable medium. Fusion and regeneration of the spheroplasts were attempted using drug resistant mutant strains ofM. smegmalis. Recombinants were obtained from spheroplast fusion mediated by polyethylene glycol and dimethyl sulfoxide. Simultaneous expression of rccombinant properties was observed only after an initial lag in the isolated clones. This has been explained as due to “chromosome inactivation” in the fused product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumorigenesis is a consequence of inactivating mutations of tumor suppressor genes and activating mutations of proto-oncogenes. Most of the mutations compromise cell autonomous and non-autonomous restrains on cell proliferation by modulating kinase signal transduction pathways. LKB1 is a tumor suppressor kinase whose sporadic mutations are frequently found in non-small cell lung cancer and cervical cancer. Germ-line mutations in the LKB1 gene lead to Peutz-Jeghers syndrome with an increased risk of cancer and development of benign gastrointestinal hamartomatous polyps consisting of hyperproliferative epithelia and prominent stromal stalk composed of smooth muscle cell lineage cells. The tumor suppressive function of LKB1 is possibly mediated by 14 identified LKB1 substrate kinases, whose activation is dependent on the LKB1 kinase complex. The aim of my thesis was to identify cell signaling pathways crucial for tumor suppression by LKB1. Re-introduction of LKB1 expression in the melanoma cell line G361 induces cell cycle arrest. Here we demonstrated that restoring the cytoplasmic LKB1 was sufficient to induce the cell cycle arrest in a tumor suppressor p53 dependent manner. To address the role of LKB1 in gastrointestinal tumor suppression, Lkb1 was deleted specifically in SMC lineage in vivo, which was sufficient to cause Peutz-Jeghers syndrome type polyposis. Studies on primary myofibroblasts lacking Lkb1 suggest that the regulation of TGFβ signaling, actin stress fibers and smooth muscle cell lineage differentiation are candidate mechanisms for tumor suppression by LKB1 in the gastrointestinal stroma. Further studies with LKB1 substrate kinase NUAK2 in HeLa cells indicate that NUAK2 is part of a positive feedback loop by which NUAK2 expression promotes actin stress fiber formation and, reciprocally the induction of actin stress fibers promote NUAK2 expression. Findings in this thesis suggest that p53 and TGFβ signaling pathways are potential mediators of tumor suppression by LKB1. An indication of NUAK2 in the promotion of actin stress fibers suggests that NUAK2 is one possible mediator of LKB1 dependent TGFβ signaling and smooth muscle cell lineage differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of the antileukemic drugs, cytosine-arabinoside (Ara-C) and adenosine-arabinoside (Ara-A) and a structural analogue, cytidine, with aromatic dipeptides has been studied by fluorescence and NMR spectroscopy. Ara-C and cytidine bind tryptophanyl and histidyl dipeptides but not tyrosyl dipeptides, while Ara-A does not bind to any of them. Both studies indicate association involving stacking of aromatic moieties. NMR spectra also indicate a protonation of the histidine moiety by Ara-C. In case of cytidine, the chemical shifts observed on binding to His-Phe imply that the backbone protons of the dipeptide participate in the binding. The conformation of the sugar and the base seem to play a very important role in the binding phenomenon as three similar molecules, Ara-C, Ara-A and cytidine bind in totally different ways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug induced liver injury is one of the frequent reasons for the drug removal from the market. During the recent years there has been a pressure to develop more cost efficient, faster and easier ways to investigate drug-induced toxicity in order to recognize hepatotoxic drugs in the earlier phases of drug development. High Content Screening (HCS) instrument is an automated microscope equipped with image analysis software. It makes the image analysis faster and decreases the risk for an error caused by a person by analyzing the images always in the same way. Because the amount of drug and time needed in the analysis are smaller and multiple parameters can be analyzed from the same cells, the method should be more sensitive, effective and cheaper than the conventional assays in cytotoxicity testing. Liver cells are rich in mitochondria and many drugs target their toxicity to hepatocyte mitochondria. Mitochondria produce the majority of the ATP in the cell through oxidative phosphorylation. They maintain biochemical homeostasis in the cell and participate in cell death. Mitochondria is divided into two compartments by inner and outer mitochondrial membranes. The oxidative phosphorylation happens in the inner mitochondrial membrane. A part of the respiratory chain, a protein called cytochrome c, activates caspase cascades when released. This leads to apoptosis. The aim of this study was to implement, optimize and compare mitochondrial toxicity HCS assays in live cells and fixed cells in two cellular models: human HepG2 hepatoma cell line and rat primary hepatocytes. Three different hepato- and mitochondriatoxic drugs (staurosporine, rotenone and tolcapone) were used. Cells were treated with the drugs, incubated with the fluorescent probes and then the images were analyzed using Cellomics ArrayScan VTI reader. Finally the results obtained after optimizing methods were compared to each other and to the results of the conventional cytotoxicity assays, ATP and LDH measurements. After optimization the live cell method and rat primary hepatocytes were selected to be used in the experiments. Staurosporine was the most toxic of the three drugs and caused most damage to the cells most quickly. Rotenone was not that toxic, but the results were more reproducible and thus it would serve as a good positive control in the screening. Tolcapone was the least toxic. So far the conventional analysis of cytotoxicity worked better than the HCS methods. More optimization needs to be done to get the HCS method more sensitive. This was not possible in this study due to time limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of adverse drug combinations, abuse of medicinal drugs and substance abuse are considerable social problems that are difficult to study. Prescription database studies might fail to incorporate factors like use of over-the-counter drugs and patient compliance, and spontaneous reporting databases suffer from underreporting. Substance abuse and smoking studies might be impeded by poor participation activity and reliability. The Forensic Toxicology Unit at the University of Helsinki is the only laboratory in Finland that performs forensic toxicology related to cause-of-death investigations comprising the analysis of over 6000 medico-legal cases yearly. The analysis repertoire covers most commonly used drugs and drugs of abuse, and the ensuing database contains also background information and information extracted from the final death certificate. In this thesis, the data stored in this comprehensive post-mortem toxicology database was combined with additional metabolite and genotype analyses that were performed to complete the profile of selected cases. The incidence of drug combinations possessing serious adverse drug interactions was generally low (0.71%), but it was notable for the two individually studied drugs, a common anticoagulant warfarin (33%) and a new generation antidepressant venlafaxine (46%). Serotonin toxicity and adverse cardiovascular effects were the most prominent possible adverse outcomes. However, the specific role of the suspected adverse drug combinations was rarely recognized in the death certificates. The frequency of bleeds was observed to be elevated when paracetamol and warfarin were used concomitantly. Pharmacogenetic factors did not play a major role in fatalities related to venlafaxine, but the presence of interacting drugs was more common in cases showing high venlafaxine concentrations. Nicotine findings in deceased young adults were roughly three times more prevalent than the smoking frequency estimation of living population. Contrary to previous studies, no difference in the proportion of suicides was observed between nicotine users and non-nicotine users. However, findings of abused substances, including abused prescription drugs, were more common in the nicotine users group than in the non-nicotine users group. The results of the thesis are important for forensic and clinical medicine, as well as for public health. The possibility of drug interactions and pharmacogenetic issues should be taken into account in cause-of-death investigations, especially in unclear cases, medical malpractice suspicions and cases where toxicological findings are scarce. Post-mortem toxicological epidemiology is a new field of research that can help to reveal problems in drug use and prescription practises.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foreign compounds, such as drugs are metabolised in the body in numerous reactions. Metabolic reactions are divided into phase I (functionalisation) and phase II (conjugation) reactions. Uridine diphosphoglucuronosyltransferase enzymes (UGTs) are important catalysts of phase II metabolic system. They catalyse the transfer of glucuronic acid to small lipophilic molecules and convert them to hydrophilic and polar glucuronides that are readily excreted from the body. Liver is the main site of drug metabolism. Many drugs are racemic mixtures of two enantiomers. Glucuronidation of a racemic compound yields a pair of diastereomeric glucuronides. Stereoisomers are interesting substrates in glucuronidation studies since some UGTs display stereoselectivity. Diastereomeric glucuronides of O-desmethyltramadol (M1) and entacapone were selected as model compounds in this work. The investigations of the thesis deal with enzymatic glucuronidation and the development of analytical methods for drug metabolites, particularly diastereomeric glucuronides. The glucuronides were analysed from complex biological matrices, such as urine or from in vitro incubation matrices. Various pretreatment techniques were needed to purify, concentrate and isolate the analytes of interest. Analyses were carried out by liquid chromatography (LC) with ultraviolet (UV) or mass spectrometric (MS) detection or with capillary electromigration techniques. Commercial glucuronide standards were not available for the studies. Enzyme-assisted synthesis with rat liver microsomes was therefore used to produce M1 glucuronides as reference compounds. The glucuronides were isolated by LC/UV and ultra performance liquid chromatography (UPLC)/MS, while tandem mass spectrometry (MS/MS) and nuclear magnetic resonance (NMR) spectroscopy were employed in structural characterisation. The glucuronides were identified as phenolic O-glucuronides of M1. To identify the active UGT enzymes in (±)-M1 glucuronidation recombinant human UGTs and human tissue microsomes were incubated with (±)-M1. The study revealed that several UGTs can catalyse (±)-M1 glucuronidation. Glucuronidation in human liver microsomes like in rat liver microsomes is stereoselective. The results of the studies showed that UGT2B7, most probably, is the main UGT responsible for (±)-M1 glucuronidation in human liver. Large variation in stereoselectivity of UGTs toward (±)-M1 enantiomers was observed. Formation of M1 glucuronides was monitored with a fast and selective UPLC/MS method. Capillary electromigration techniques are known for their high resolution power. A method that relied on capillary electrophoresis (CE) with UV detection was developed for the separation of tramadol and its free and glucuronidated metabolites. The suitability of the method to identify tramadol metabolites in an authentic urine samples was tested. Unaltered tramadol and four of its main metabolites were detected in the electropherogram. A micellar electrokinetic chromatography (MEKC) /UV method was developed for the separation of the glucuronides of entacapone in human urine. The validated method was tested in the analysis of urine samples of patients. The glucuronides of entacapone could be quantified after oral entacapone dosing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the crystal structure of the antimalarial drug amodiaquine, the bonds linking the quinoline and the phenyl groups show partial double-bond character. The partial double-bond character of the two exocyclic bonds, together with stereochemical constraints, reduce flexibility of the two ring systems of the molecule. The dihedral angle between the two ring planes is lowest compared to those in the antileukaemic drug amsacrine and its derivatives. CPK-modelling studies suggest the way amodiaquine can bind to DNA. Stacking interaction between the quinoline and phenyl groups of independent molecules and the hydrogen-bond network stabilize the crystal structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, an attempt was made to study the acute and sub-acute toxicity profile of G3-COOH Poly (propyl ether imine) PETIM] dendrimer and its use as a carrier for sustained delivery of model drug ketoprofen. Drug-dendrimer complex was prepared and characterized by FTIR, solubility and in vitro drug release study. PETIM dendrimer was found to have significantly less toxicity in A541 cells compared to Poly amido amine (PAMAM) dendrimer. Further, acute and 28 days sub-acute toxicity measurement in mice showed no mortality, hematological, biochemical or histopathological changes up to 80 mg/kg dose of PETIM dendrimer. The results of study demonstrated that G3-COOH PETIM dendrimer can be used as a safe and efficient vehicle for sustained drug delivery. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a pharmacological inhibitor of Hsp90 in cultured malarial parasite, we have previously implicated Plasmodium falciparum Hsp90 (PfHsp90) as a drug target against malaria. In this study, we have biochemically characterized PfHsp90 in terms of its ATPase activity and interaction with its inhibitor geldanamycin (GA) and evaluated its potential as a drug target in a preclinical mouse model of malaria. In addition, we have explored the potential of Hsp90 inhibitors as drugs for the treatment of Trypanosoma infection in animals. Our studies with full-length PfHsp90 showed it to have the highest ATPase activity of all known Hsp90s; its ATPase activity was 6 times higher than that of human Hsp90. Also, GA brought about more robust inhibition of PfHsp90 ATPase activity as compared with human Hsp90. Mass spectrometric analysis of PfHsp90 expressed in P. falciparum identified a site of acetylation that overlapped with Aha1 and p23 binding domain, suggesting its role in modulating Hsp90 multichaperone complex assembly. Indeed, treatment of P. falciparum cultures with a histone deacetylase inhibitor resulted in a partial dissociation of PfHsp90 complex. Furthermore, we found a well known, semisynthetic Hsp90 inhibitor, namely 17-(allylamino)-17-demethoxygeldanamycin, to be effective in attenuating parasite growth and prolonging survival in a mouse model of malaria. We also characterized GA binding to Hsp90 from another protozoan parasite, namely Trypanosoma evansi. We found 17-(allylamino)-17-demethoxygeldanamycin to potently inhibit T. evansi growth in a mouse model of trypanosomiasis. In all, our biochemical characterization, drug interaction, and animal studies supported Hsp90 as a drug target and its inhibitor as a potential drug against protozoan diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) is a unique barrier that strictly regulates the entry of endogenous substrates and xenobiotics into the brain. This is due to its tight junctions and the array of transporters and metabolic enzymes that are expressed. The determination of brain concentrations in vivo is difficult, laborious and expensive which means that there is interest in developing predictive tools of brain distribution. Predicting brain concentrations is important even in early drug development to ensure efficacy of central nervous system (CNS) targeted drugs and safety of non-CNS drugs. The literature review covers the most common current in vitro, in vivo and in silico methods of studying transport into the brain, concentrating on transporter effects. The consequences of efflux mediated by p-glycoprotein, the most widely characterized transporter expressed at the BBB, is also discussed. The aim of the experimental study was to build a pharmacokinetic (PK) model to describe p-glycoprotein substrate drug concentrations in the brain using commonly measured in vivo parameters of brain distribution. The possibility of replacing in vivo parameter values with their in vitro counterparts was also studied. All data for the study was taken from the literature. A simple 2-compartment PK model was built using the Stella™ software. Brain concentrations of morphine, loperamide and quinidine were simulated and compared with published studies. Correlation of in vitro measured efflux ratio (ER) from different studies was evaluated in addition to studying correlation between in vitro and in vivo measured ER. A Stella™ model was also constructed to simulate an in vitro transcellular monolayer experiment, to study the sensitivity of measured ER to changes in passive permeability and Michaelis-Menten kinetic parameter values. Interspecies differences in rats and mice were investigated with regards to brain permeability and drug binding in brain tissue. Although the PK brain model was able to capture the concentration-time profiles for all 3 compounds in both brain and plasma and performed fairly well for morphine, for quinidine it underestimated and for loperamide it overestimated brain concentrations. Because the ratio of concentrations in brain and blood is dependent on the ER, it is suggested that the variable values cited for this parameter and its inaccuracy could be one explanation for the failure of predictions. Validation of the model with more compounds is needed to draw further conclusions. In vitro ER showed variable correlation between studies, indicating variability due to experimental factors such as test concentration, but overall differences were small. Good correlation between in vitro and in vivo ER at low concentrations supports the possibility of using of in vitro ER in the PK model. The in vitro simulation illustrated that in the simulation setting, efflux is significant only with low passive permeability, which highlights the fact that the cell model used to measure ER must have low enough paracellular permeability to correctly mimic the in vivo situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MEMS systems are technologically developed from integrated circuit industry to create miniature sensors and actuators. Originally these semiconductor processes and materials were used to build electrical and mechanical systems, but expanded to include biological, optical fluidic magnetic and other systems 12]. Here a novel approach is suggested where in two different fields are integrated via moems, micro fluidics and ring resonators. It is well known at any preliminary stage of disease onset, many physiological changes occur in the body fluids like saliva, blood, urine etc. The drawback till now was that current calibrations are not sensitive enough to detect the minor physiological changes. This is overcome using optical detector techniques 1]. The basic concepts of ring resonators, with slight variations can be used for optical detection of these minute disease markers. A well known fact of ring resonators is that a change in refractive index will trigger a shift in the resonant wavelength 5]. The trigger for the wavelength shift in the case discussed will be the presence of disease agents. To trap the disease agents specific antibody has to be used (e. g. BSA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A team of unmanned aerial vehicles (UAVs) with limited communication ranges and limited resources are deployed in a region to search and destroy stationary and moving targets. When a UAV detects a target, depending on the target resource requirement, it is tasked to form a coalition over the dynamic network formed by the UAVs. In this paper, we develop a mechanism to find potential coalition members over the network using principles from internet protocol and introduce an algorithm using Particle Swarm Optimization to generate a coalition that destroys the target is minimum time. Monte-Carlo simulations are carried out to study how coalition are formed and the effects of coalition process delays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generic nonlinear mathematical model describing the human immunological dynamics is used to design an effective automatic drug administration scheme. Even though the model describes the effects of various drugs on the dynamic system, this work is confined to the drugs that kill the invading pathogen and heal the affected organ. From a system theoretic point of view, the drug inputs can be interpreted as control inputs, which can be designed based on control theoretic concepts. The controller is designed based on the principle of dynamic inversion and is found to be effective in curing the �nominal model patient� by killing the invading microbes and healing the damaged organ. A major advantage of this technique is that it leads to a closed-form state feedback form of control. It is also proved from a rigorous mathematical analysis that the internal dynamics of the system remains stable when the proposed controller is applied. A robustness study is also carried out for testing the effectiveness of the drug administration scheme for parameter uncertainties. It is observed from simulation studies that the technique has adequate robustness for many �realistic model patients� having off-nominal parameter values as well.