840 resultados para discotics, columar liquid crystals, solid-state NMR, liquid crystal engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: It is well known that the Amazon region presents a huge biodiversity; therefore, countless natural resources are being employed in the production of phytocosmetics and phytomedicines. Objective: The purpose of this work was to obtain emulsions produced with Buriti oil and nonionic surfactants. Methods: Two surfactant systems were employed (Steareth-2 associated to Ceteareth-5 and to Ceteareth-20) to produce the emulsions using phase diagram method. Emulsions were obtained by echo-planar imaging method at 75 degrees C. Rheological behavior and zeta potential were evaluated, and accelerated stability tests were performed. Results: All emulsions analyzed presented pseudoplastic behavior. Zeta potential values were obtained between -14.2 and -53.3 mV. The formulations did not show changes in either physical stability, pH, or rheological behavior after accelerated stability tests. Significant differences were observed only after temperature cycling test. Conclusion: Based on these results, the emulsions obtained could be considered as promising delivery systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invariant integrals are derived for nematic liquid crystals and applied to materials with small Ericksen number and topological defects. The nematic material is confined between two infinite plates located at y = -h and y = h (h is an element of R+) with a semi-infinite plate at y = 0 and x < 0. Planar and homeotropic strong anchoring boundary conditions to the director field are assumed at these two infinite and semi-infinite plates, respectively. Thus, a line disclination appears in the system which coincides with the z-axis. Analytical solutions to the director field in the neighbourhood of the singularity are obtained. However, these solutions depend on an arbitrary parameter. The nematic elastic force is thus evaluated from an invariant integral of the energy-momentum tensor around a closed surface which does not contain the singularity. This allows one to determine this parameter which is a function of the nematic cell thickness and the strength of the disclination. Analytical solutions are also deduced for the director field in the whole region using the conformal mapping method. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biopolymer-based materials have been of particular interest and they are alternatives to synthetic polymers based on the decreasing oil resources. The polymer electrolytes were doped with choline-based IL N,N,Ntrimethyl- N-(2-hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide ([N1 1 1 2(OH)][NTf2]), or Er (CF3SO3)3 or both. The polymer electrolytes were employed in the production of glass/ITO/WO3/electrolyte/ CeO2–TiO2/ITO/glass electrochromic devices (ECDs). The lowest onset temperature for the degradation of all the SPEs is at ~130 °C for the Gellan Er (CF3SO3)3 (10:1) this temperature range of stability is wide enough for a material to be applied as an electrolyte/separator component in electrochemical devices. The three ECDs displayed fast switching speed (ca. 15 s). Gellan [N1 1 1 2(OH)][NTf2] Er (CF3SO3)3 (5:1:10) exhibited an electrochromic contrast of 4.2% in the visible region, the coloration efficiency attained at 555 nm was 3.5 and 0.90 cm-2 C-1 in the “colored” and “bleached” states, respectively, and the open circuit memorywas 48 h. Preliminary tests performed with a prototype electrochromic device (ECD) incorporating WO3 as cathodic electrochromic layer, are extremely encouraging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estudi elaborat a partir d’una estada a l’ Ecole Nationale Supérieure de Chimie de Montpellier, França, durant 2006. S’han sintetitzat materials híbrids orgànico-inorgànics mitjançant el procés sol-gel i altres estratègies sintètiques. En alguns casos, s’ha intentat estructurar aquests materials, ja sigui per autoestructuració o per mitjà de tensioactius. Com a catalitzadors de les reaccions d'hidròlisi i policondensació s’han utilitzat àcids, bases i fluorurs. Els materials obtinguts s’han caracteritzat mitjançant diferents tècniques: BET (Brunauer-Emmett-Teller), TEM (microscopia electrònica de transmissió), SEM (microscòpia electrònica de rastreig), raigs X en pols , IR i RMN (ressonància magnètica nuclear) en estat sòlid. Amb aquests materials es pretén preparar catalitzadors heterogenis de Pd per reaccions d’acoblament creuat, i de Ru per reaccions de metàtesi. També s’han sintetitzat sals d'imidazoli amb cadenes hidrocarbonades llargues amb l'objectiu de preparar gels de sílice amb aquestes molècules atrapades dins la matriu inorgànica. Aquests materials s’utilitzaran com a organocatalitzadors i també es prepararan els corresponents catalitzadors de Pd per reaccions de Heck, Suzuki i Sonogashira. Les sals d’imidazoli s’han utilitzat com a tensioactius en la preparació de gels de sílice estructurats. Aquestes molècules han resultat ser cristalls líquids i s’han caracteritzar mitjançant DSC (differential scanning calorimetry), microscopia òptica i raigs X.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present calculations for the static structure and ordering properties of two lithium-based s-p bonded liquid alloys, Li-Na and Li-Mg. Our theoretical approach is based on the neutral pseudoatom method to derive the interatomic pair potentials, and on the modified-hypernetted-chain theory of liquids to obtain the liquid static structure, leading to a whole combination that is free of adjustable parameters. The study is complemented by performing molecular dynamics simulations which, besides checking the theoretical static structural results, also allow a calculation of some dynamical properties. The obtained results are compared with the available experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dependence of the dynamic properties of liquid metals and Lennard-Jones fluids on the characteristics of the interaction potentials is analyzed. Molecular-dynamics simulations of liquids in analogous conditions but assuming that their particles interact either through a Lennard-Jones or a liquid-metal potential were carried out. The Lennard-Jones potentials were chosen so that both the effective size of the particles and the depth of the potential well were very close to those of the liquid-metal potentials. In order to investigate the extent to which the dynamic properties of liquids depend on the short-range attractive interactions as well as on the softness of the potential cores, molecular-dynamics simulations of the same systems but assuming purely repulsive interactions with the same potential cores were also performed. The study includes both singleparticle dynamic properties, such as the velocity autocorrelation functions, and collective dynamic properties, such as the intermediate scattering funcfunctions, and collective dynamic properties, such as the intermediate scattering functions, the dynamic structure factors, the longitudinal and transverse current correlations, and the transport coefficients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is a part of the large project with purpose to investigate microstructure and electronic structure of natural topazes using NMR method. To reach this task we determined the relative contents of fluorine and hydrogen in crystals blue, colorless, wine and wine irradiated topazes. Then we determined the electric field gradients in site of aluminium atoms by NMR method, calculated EFG using ab initio method, and measured relaxation time dependence on heating temperature for blue, colorless, Swiss blue and sky blue topazes. Nuclear magnetic resonance (NMR) is an effective method to investigate the local structure in the crystal. The NMR study of the single crystal gives detailed information especially about the local crystal structure. As a result of this work we have received practical data, which is possible to use in future for making personal dosimetry and for preparation of mullite, which is widely used in traditional and advanced ceramic materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly transparent, luminescent and biocompatible ZnO quantum dots were prepared in water, methanol, and ethanol using liquid-phase pulsed laser ablation technique without using any surfactant. Transmission electron microscopy analysis confirmed the formation of good crystalline ZnO quantum dots with a uniform size distribution of 7 nm. The emission wavelength could be varied by varying the native defect chemistry of ZnO quantum dots and the laser fluence. Highly luminescent nontoxic ZnO quantum dots have exciting application potential as florescent probes in biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the use of an open photoacoustic cell configuration for the evaluation of thermal effusivity of liquid crystals. Initially, the method is calibrated using water and glycerol as transparent liquid samples, and the role of thermal conductivity of these liquids on the photoacoustic signal amplitude is discussed. To demonstrate the application of the present method for the evaluation of thermal effusivity of liquid crystals, we have used certain multicomponent nematic liquid crystal mixtures, namely BL001, BL002, BL032, and BL035. Each of these liquid crystal mixtures contains four to nine components and are primarily based on the cyanobiphenyl structure. The measured values of thermal effusivity of BL001 and BL002 were found to be almost the same, but differ from those of BL032 and BL035, which implies a difference in composition of the latter two from the former two mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet -- matrix-assisted laser desorption/ionisation -- mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. The low-femtomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydroxybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and low-mass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have combined several key sample preparation steps for the use of a liquid matrix system to provide high analytical sensitivity in automated ultraviolet - matrix-assisted laser desorption/ ionisation - mass spectrometry (UV-MALDI-MS). This new sample preparation protocol employs a matrix-mixture which is based on the glycerol matrix-mixture described by Sze et al. U. Am. Soc. Mass Spectrom. 1998, 9, 166-174). The low-ferntomole sensitivity that is achievable with this new preparation protocol enables proteomic analysis of protein digests comparable to solid-state matrix systems. For automated data acquisition and analysis, the MALDI performance of this liquid matrix surpasses the conventional solid-state MALDI matrices. Besides the inherent general advantages of liquid samples for automated sample preparation and data acquisition the use of the presented liquid matrix significantly reduces the extent of unspecific ion signals in peptide mass fingerprints compared to typically used solid matrices, such as 2,5-dihydrox-ybenzoic acid (DHB) or alpha-cyano-hydroxycinnamic acid (CHCA). In particular, matrix and lowmass ion signals and ion signals resulting from cation adduct formation are dramatically reduced. Consequently, the confidence level of protein identification by peptide mass mapping of in-solution and in-gel digests is generally higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The success of Matrix-assisted laser desorption / ionisation (MALDI) in fields such as proteomics has partially but not exclusively been due to the development of improved data acquisition and sample preparation techniques. This has been required to overcome some of the short comings of the commonly used solid-state MALDI matrices such as - cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB). Solid state matrices form crystalline samples with highly inhomogeneous topography and morphology which results in large fluctuations in analyte signal intensity from spot to spot and positions within the spot. This means that efficient tuning of the mass spectrometer can be impeded and the use of MALDI MS for quantitative measurements is severely impeded. Recently new MALDI liquid matrices have been introduced which promise to be an effective alternative to crystalline matrices. Generally the liquid matrices comprise either ionic liquid matrices (ILMs) or a usually viscous liquid matrix which is doped with a UV lightabsorbing chromophore [1-3]. The advantages are that the droplet surface is smooth and relatively uniform with the analyte homogeneously distributed within. They have the ability to replenish a sampling position between shots negating the need to search for sample hot-spots. Also the liquid nature of the matrix allows for the use of additional additives to change the environment to which the analyte is added.