998 resultados para cortical modeling
Resumo:
The objective of the current study is to evaluate the fidelity of load cell reading during impact testing in a drop-weight impactor using lumped parameter modeling. For the most common configuration of a moving impactor-load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. A 3-DOF (degrees-of-freedom) LPM (lumped parameter model) is considered to represent a given impact testing set-up. In this model, a test specimen in the form of a steel hat section similar to front rails of cars is represented by a nonlinear spring while the load cell is assumed to behave in a linear manner due to its high stiffness. Assuming a given load-displacement response obtained in an actual test as the true behavior of the specimen, the numerical solution of the governing differential equations following an implicit time integration scheme is shown to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the load cell, however,predicts a response that qualitatively matches the assumed load-displacement response of the test specimen with a perceptibly lower magnitude of load.
Resumo:
This paper presents a new micro-scale model for solidification of eutectic alloys. The model is based on the enthalpy method and simulates the growth of adjacent alpha and beta phases from a melt of eutectic composition in a two-dimensional Eulerian framework. The evolution of the two phases is obtained from the solution of volume averaged energy and species transport equations which are formulated using the nodal enthalpy and concentration potential values. The three phases are tracked using the beta-phase fraction and the liquid fraction values in all the computational nodes. Solutal convection flow field in the domain is obtained from the solution of volume-averaged momentum and continuity equations. The governing equations are solved using a coupled explicit-implicit scheme. The model is qualitatively validated with Jackson-Hunt theory. Results show expected eutectic growth pattern and proper species transfer and diffusion field ahead of the interface. Capabilities of the model such as lamella width selection, division of lamella into thinner lamellae and the presence of solutal convection are successfully demonstrated. The present model can potentially be incorporated into the existing framework of enthalpy based micro-scale dendritic solidification models thus leading to an efficient generalized microstructure evolution model. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Hanuman langur is one of the widely distributed and extensively studied non-human diurnal primates in India. Until recently it was believed to be a single species - Semnopithecus entellus. Recent molecular and morphological studies suggest that the Hanuman langurs consists of at least three species S. entellus, S. hypoleucos and S. priam. Furthermore, morphological studies suggested that both S. hypoleucos and S. priam have at least three subspecies in each. We explored the use of ecological niche modeling (ENM) to confirm the validity of these seven taxa and an additional taxon S. johnii belonging to the same genus. MaxEnt modeling tool was used with 19 bioclimatic, 12 vegetation and 6 hydrological environmental layers. We reduced total environmental variables to 14 layers after testing for collinearity and an independent test for model prediction was done using ENMTools. A total of 196 non-overlapping data points from primary and secondary sources were used as inputs for ENM. Results showed eight distinct ecological boundaries, corroborating the eight taxa mentioned above thereby confirming validity of these eight taxa. The study, for the first time provided ecological variables that determined the ecological requirements and distribution of members of the Hanuman langur species complex in the Indian peninsula.
Resumo:
In contemporary wideband orthogonal frequency division multiplexing (OFDM) systems, such as Long Term Evolution (LTE) and WiMAX, different subcarriers over which a codeword is transmitted may experience different signal-to-noise-ratios (SNRs). Thus, adaptive modulation and coding (AMC) in these systems is driven by a vector of subcarrier SNRs experienced by the codeword, and is more involved. Exponential effective SNR mapping (EESM) simplifies the problem by mapping this vector into a single equivalent fiat-fading SNR. Analysis of AMC using EESM is challenging owing to its non-linear nature and its dependence on the modulation and coding scheme. We first propose a novel statistical model for the EESM, which is based on the Beta distribution. It is motivated by the central limit approximation for random variables with a finite support. It is simpler and as accurate as the more involved ad hoc models proposed earlier. Using it, we develop novel expressions for the throughput of a point-to-point OFDM link with multi-antenna diversity that uses EESM for AMC. We then analyze a general, multi-cell OFDM deployment with co-channel interference for various frequency-domain schedulers. Extensive results based on LTE and WiMAX are presented to verify the model and analysis, and gain new insights.
Resumo:
Accurately characterizing the time-varying interference caused to the primary users is essential in ensuring a successful deployment of cognitive radios (CR). We show that the aggregate interference at the primary receiver (PU-Rx) from multiple, randomly located cognitive users (CUs) is well modeled as a shifted lognormal random process, which is more accurate than the lognormal and the Gaussian process models considered in the literature, even for a relatively dense deployment of CUs. It also compares favorably with the asymptotically exact stable and symmetric truncated stable distribution models, except at high CU densities. Our model accounts for the effect of imperfect spectrum sensing, which depends on path-loss, shadowing, and small-scale fading of the link from the primary transmitter to the CU; the interweave and underlay modes or CR operation, which determine the transmit powers of the CUs; and time-correlated shadowing and fading of the links from the CUs to the PU-Rx. It leads to expressions for the probability distribution function, level crossing rate, and average exceedance duration. The impact of cooperative spectrum sensing is also characterized. We validate the model by applying it to redesign the primary exclusive zone to account for the time-varying nature of interference.
Resumo:
Overland rain retrieval using spaceborne microwave radiometer offers a myriad of complications as land presents itself as a radiometrically warm and highly variable background. Hence, land rainfall algorithms of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) have traditionally incorporated empirical relations of microwave brightness temperature (Tb) with rain rate, rather than relying on physically based radiative transfer modeling of rainfall (as implemented in the TMI ocean algorithm). In this paper, sensitivity analysis is conducted using the Spearman rank correlation coefficient as benchmark, to estimate the best combination of TMI low-frequency channels that are highly sensitive to the near surface rainfall rate from the TRMM Precipitation Radar (PR). Results indicate that the TMI channel combinations not only contain information about rainfall wherein liquid water drops are the dominant hydrometeors but also aid in surface noise reduction over a predominantly vegetative land surface background. Furthermore, the variations of rainfall signature in these channel combinations are not understood properly due to their inherent uncertainties and highly nonlinear relationship with rainfall. Copula theory is a powerful tool to characterize the dependence between complex hydrological variables as well as aid in uncertainty modeling by ensemble generation. Hence, this paper proposes a regional model using Archimedean copulas, to study the dependence of TMI channel combinations with respect to precipitation, over the land regions of Mahanadi basin, India, using version 7 orbital data from the passive and active sensors on board TRMM, namely, TMI and PR. Studies conducted for different rainfall regimes over the study area show the suitability of Clayton and Gumbel copulas for modeling convective and stratiform rainfall types for the majority of the intraseasonal months. Furthermore, large ensembles of TMI Tb (from the most sensitive TMI channel combination) were generated conditional on various quantiles (25th, 50th, 75th, and 95th) of the convective and the stratiform rainfall. Comparatively greater ambiguity was observed to model extreme values of the convective rain type. Finally, the efficiency of the proposed model was tested by comparing the results with traditionally employed linear and quadratic models. Results reveal the superior performance of the proposed copula-based technique.
Resumo:
Microorganisms exhibit varied regulatory strategies such as direct regulation, symmetric anticipatory regulation, asymmetric anticipatory regulation, etc. Current mathematical modeling frameworks for the growth of microorganisms either do not incorporate regulation or assume that the microorganisms utilize the direct regulation strategy. In the present study, we extend the cybernetic modeling framework to account for asymmetric anticipatory regulation strategy. The extended model accurately captures various experimental observations. We use the developed model to explore the fitness advantage provided by the asymmetric anticipatory regulation strategy and observe that the optimal extent of asymmetric regulation depends on the selective pressure that the microorganisms experience. We also explore the importance of timing the response in anticipatory regulation and find that there is an optimal time, dependent on the extent of asymmetric regulation, at which microorganisms should respond anticipatorily to maximize their fitness. We then discuss the advantages offered by the cybernetic modeling framework over other modeling frameworks in modeling the asymmetric anticipatory regulation strategy. (C) 2013 Published by Elsevier Inc.
Resumo:
We develop a communication theoretic framework for modeling 2-D magnetic recording channels. Using the model, we define the signal-to-noise ratio (SNR) for the channel considering several physical parameters, such as the channel bit density, code rate, bit aspect ratio, and noise parameters. We analyze the problem of optimizing the bit aspect ratio for maximizing SNR. The read channel architecture comprises a novel 2-D joint self-iterating equalizer and detection system with noise prediction capability. We evaluate the system performance based on our channel model through simulations. The coded performance with the 2-D equalizer detector indicates similar to 5.5 dB of SNR gain over uncoded data.
Resumo:
It is a well-known fact that most of the developing countries have intermittent water supply and the quantity of water supplied from the source is also not distributed equitably among the consumers. Aged pipelines, pump failures, and improper management of water resources are some of the main reasons for it. This study presents the application of a nonlinear control technique to overcome this problem in different zones in the city of Bangalore. The water is pumped to the city from a large distance of approximately 100km over a very high elevation of approximately 400m. The city has large undulating terrain among different zones, which leads to unequal distribution of water. The Bangalore, inflow water-distribution system (WDS) has been modeled. A dynamic inversion (DI) nonlinear controller with proportional integral derivative (PID) features (DI-PID) is used for valve throttling to achieve the target flows to different zones of the city. This novel approach of equitable water distribution using DI-PID controllers that can be used as a decision support system is discussed in this paper.
Resumo:
Interaction of adsorbate on charged surfaces, orientation of the analyte on the surface, and surface enhancement aspects have been studied. These aspects have been explored in details to explain the surface-enhanced Raman spectroscopic (SERS) spectra of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW or CL-20), a well-known explosive, and 2,4,6-trinitrotoluene (TNT) using one-pot synthesis of silver nanoparticles via biosynthetic route using natural precursor extracts of clove and pepper. The biosynthesized silver nanoparticles (bio Ag Nps) have been characterized using UV-vis spectroscopy, scanning electron microscopy and atomic force microscopy. SERS studies conducted using bio Ag Nps on different water insoluble analytes, such as CL-20 and TNT, lead to SERS signals at concentration levels of 400 pM. The experimental findings have been corroborated with density functional computational results, electrostatic surface potential calculations, Fukui functions and potential measurements.
Resumo:
In-Cu composite solders have been proposed as an effective thermal interface material. Here, finite element analysis and theoretical treatment of their mechanical and thermal behavior is presented. It was determined that the stresses and the strains were concentrated in the narrow and wider In channels, respectively. Furthermore, it is suggested that an In-Cu composite with disk-shaped Cu inclusions may not only further improve the thermal conductivity but may also reduce the stiffness of In-Cu composites in shear.
Resumo:
A model has been developed to simulate the foam characteristics obtained, when chemical (water) and physical (Freon) blowing agents are used together for the formation of polyurethane foams. The model considers the rate of reaction, the consequent rise in temperature of the reaction mixture, nucleation of bubbles, and mass transfer of CO2 and Freon to them till the time of gelation. The model is able to explain the experimental results available in literature. It further predicts that the nucleation period gets reduced with increase in water (at constant Freon content), whereas with increase in Freon (at constant water) concentration nucleation period decreases marginally leading to narrower bubble-size distribution. By the use of uniform sized nuclei added initially, the model predicts that the bubble-size distribution can be made independent of the rate of homogeneous nucleation and can, thus, offer an extra parameter for its control. (C) 2014 Wiley Periodicals, Inc.
Resumo:
With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naive Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (approximate to 85%) and specific (approximate to 95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. Proteins 2014; 82:1219-1234. (c) 2013 Wiley Periodicals, Inc.
Resumo:
Global change in climate and consequent large impacts on regional hydrologic systems have, in recent years, motivated significant research efforts in water resources modeling under climate change. In an integrated future hydrologic scenario, it is likely that water availability and demands will change significantly due to modifications in hydro-climatic variables such as rainfall, reservoir inflows, temperature, net radiation, wind speed and humidity. An integrated regional water resources management model should capture the likely impacts of climate change on water demands and water availability along with uncertainties associated with climate change impacts and with management goals and objectives under non-stationary conditions. Uncertainties in an integrated regional water resources management model, accumulating from various stages of decision making include climate model and scenario uncertainty in the hydro-climatic impact assessment, uncertainty due to conflicting interests of the water users and uncertainty due to inherent variability of the reservoir inflows. This paper presents an integrated regional water resources management modeling approach considering uncertainties at various stages of decision making by an integration of a hydro-climatic variable projection model, a water demand quantification model, a water quantity management model and a water quality control model. Modeling tools of canonical correlation analysis, stochastic dynamic programming and fuzzy optimization are used in an integrated framework, in the approach presented here. The proposed modeling approach is demonstrated with the case study of the Bhadra Reservoir system in Karnataka, India.