919 resultados para cooperación regional
Resumo:
Bull sperm heads and tails have been separated by proteolytic digestion (trypsin) and plasma membranes have been isolated, using discontinuous sucrose density gradient centrifugation. Plasma membrane bound Ca2+-ATPase is shown to be associated mostly with the tail membranes. Pyrene excimer fluorescence and diphenylhexatriene fluorescence polarization experiments indicate a more fluid lipid phase in the tail region. Differences in surface charge distribution have been found, using 1-anilinonaphthalene-8-sulfonate and Tb3+ as fluorescent probes.
Resumo:
Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.
Resumo:
Remote detection of management-related trend in the presence of inter-annual climatic variability in the rangelands is difficult. Minimally disturbed reference areas provide a useful guide, but suitable benchmarks are usually difficult to identify. We describe a method that uses a unique conceptual framework to identify reference areas from multitemporal sequences of ground cover derived from Landsat TM and ETM+ imagery. The method does not require ground-based reference sites nor GIS layers about management. We calculate a minimum ground cover image across all years to identify locations of most persistent ground cover in years of lowest rainfall. We then use a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. This difference estimates ground-cover change between successive below-average rainfall years, which provides a seasonally interpreted measure of management effects. We examine the approach's sensitivity to window size and to cover-index percentiles used to define persistence. The method successfully detected management-related change in ground cover in Queensland tropical savanna woodlands in two case studies: (1) a grazing trial where heavy stocking resulted in substantial decline in ground cover in small paddocks, and (2) commercial paddocks where wet-season spelling (destocking) resulted in increased ground cover. At a larger scale, there was broad agreement between our analysis of ground-cover change and ground-based land condition change for commercial beef properties with different a priori ratings of initial condition, but there was also some disagreement where changing condition reflected pasture composition rather than ground cover. We conclude that the method is suitably robust to analyse grazing effects on ground cover across the 1.3 x 10(6) km(2) of Queensland's rangelands. Crown Copyright (c) 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
Background Next-generation sequencing technology is an important tool for the rapid, genome-wide identification of genetic variations. However, it is difficult to resolve the ‘signal’ of variations of interest and the ‘noise’ of stochastic sequencing and bioinformatic errors in the large datasets that are generated. We report a simple approach to identify regional linkage to a trait that requires only two pools of DNA to be sequenced from progeny of a defined genetic cross (i.e. bulk segregant analysis) at low coverage (<10×) and without parentage assignment of individual SNPs. The analysis relies on regional averaging of pooled SNP frequencies to rapidly scan polymorphisms across the genome for differential regional homozygosity, which is then displayed graphically. Results Progeny from defined genetic crosses of Tribolium castaneum (F4 and F19) segregating for the phosphine resistance trait were exposed to phosphine to select for the resistance trait while the remainders were left unexposed. Next generation sequencing was then carried out on the genomic DNA from each pool of selected and unselected insects from each generation. The reads were mapped against the annotated T. castaneum genome from NCBI (v3.0) and analysed for SNP variations. Since it is difficult to accurately call individual SNP frequencies when the depth of sequence coverage is low, variant frequencies were averaged across larger regions. Results from regional SNP frequency averaging identified two loci, tc_rph1 on chromosome 8 and tc_rph2 on chromosome 9, which together are responsible for high level resistance. Identification of the two loci was possible with only 5-7× average coverage of the genome per dataset. These loci were subsequently confirmed by direct SNP marker analysis and fine-scale mapping. Individually, homozygosity of tc_rph1 or tc_rph2 results in only weak resistance to phosphine (estimated at up to 1.5-2.5× and 3-5× respectively), whereas in combination they interact synergistically to provide a high-level resistance >200×. The tc_rph2 resistance allele resulted in a significant fitness cost relative to the wild type allele in unselected beetles over eighteen generations. Conclusion We have validated the technique of linkage mapping by low-coverage sequencing of progeny from a simple genetic cross. The approach relied on regional averaging of SNP frequencies and was used to successfully identify candidate gene loci for phosphine resistance in T. castaneum. This is a relatively simple and rapid approach to identifying genomic regions associated with traits in defined genetic crosses that does not require any specialised statistical analysis.
Resumo:
Climate change and on-going water policy reforms will likely contribute to on-farm and regional structural adjustment in Australia. This paper gathers empirical evidence of farm-level structural adjustments and integrates these with a regional equilibrium model to investigate sectoral and regional impacts of climate change and recent water use policy on rice industry. We find strong evidence of adjustments to the farming system, enabled by existing diversity in on-farm production. A further loss of water with additional pressures to adopt less intensive and larger-scale farming, will however reduce the net number of farm businesses, which may affect regional rice production. The results from a regional CGE model show impacts on the regional economy over and above the direct cost of the environmental water, although a net reduction in real economic output and real income is partially offset by gains in rest of the Australia through the reallocation or resources. There is some interest within the industry and from potential new corporate entrants in the relocation of some rice production to the north. However, strong government support would be crucial to implement such relocation.
Resumo:
Drink driving is a leading cause of criminal justice system contact for Indigenous Australians. National and state strategies recommend Indigenous road safety initiatives are warranted. However, there is sparse evidence to inform drink driving-related preventive and treatment measures. Using quantitative and qualitative methods, the study examines the profile of Queensland’s Indigenous drink drivers using court convictions and identifies the contributing psycho-social, cultural and contextual factors through qualitative interviews.
Resumo:
In 2011, more than 75,000 people died in road crashes in the ten member countries of the Association of South East Asian Nations (ASEAN) and many times this number sustained long term injuries. Improving road safety outcomes in ASEAN is not only important for the welfare and economic benefit of these countries, but given that a significant proportion of the world's population lives in ASEAN, it will strongly influence whether the aims of the United Nations Decade of Action for Road Safety and the Sustainable Development Goals are reached. Following the ASEAN Senior Transport Officials Meeting in May 2011, the Secretariat requested the Asian Development Bank (ADB) to provide assistance to improve road safety in ASEAN. In response, ADB, funded by the Japan Fund for Poverty Reduction, has funded a package of action to improve road safety in ASEAN, including the development of a new regional road safety strategy. The diversity of the member nations of ASEAN poses significant challenges for the development of the strategy. For example, the road fatality rates per 100,000 population in Malaysia and Thailand are about 5 times greater than in Singapore. In addition, the importance of particular road safety issues varies across the ASEAN countries and for countries which are undergoing rapid motorization, the order of importance may change over the life of the strategy. The development of the ASEAN Regional Road Safety Strategy has adopted the five pillars of road safety of the UN Decade of Action but focused on those aspects which are most relevant at the regional level and where a regional approach will support and facilitate actions taken by individual countries. A draft ASEAN Regional Road Safety Strategy document has been prepared and consultation will further refine its directions and contents. The paper will describe the processes undertaken to identify issues and solutions, the measurement of road safety maturity and behavioural risk factors, and the overall structure and themes of the strategy.
Resumo:
Extensive resources are allocated to managing vertebrate pests, yet spatial understanding of pest threats, and how they respond to management, is limited at the regional scale where much decision-making is undertaken. We provide regional-scale spatial models and management guidance for European rabbits (Oryctolagus cuniculus) in a 260,791 km(2) region in Australia by determining habitat suitability, habitat susceptibility and the effects of the primary rabbit management options (barrier fence, shooting and baiting and warren ripping) or changing predation or disease control levels. A participatory modelling approach was used to develop a Bayesian network which captured the main drivers of suitability and spread, which in turn was linked spatially to develop high resolution risk maps. Policy-makers, rabbit managers and technical experts were responsible for defining the questions the model needed to address, and for subsequently developing and parameterising the model. Habitat suitability was determined by conditions required for warren-building and by above-ground requirements, such as food and harbour, and habitat susceptibility by the distance from current distributions, habitat suitability, and the costs of traversing habitats of different quality. At least one-third of the region had a high probability of being highly suitable (support high rabbit densities), with the model supported by validation. Habitat susceptibility was largely restricted by the current known rabbit distribution. Warren ripping was the most effective control option as warrens were considered essential for rabbit persistence. The anticipated increase in disease resistance was predicted to increase the probability of moderately suitable habitat becoming highly suitable, but not increase the at-risk area. We demonstrate that it is possible to build spatial models to guide regional-level management of vertebrate pests which use the best available knowledge and capture fine spatial-scale processes.
Resumo:
The SiMERR National Survey was one of the first priorities of the National Centre of Science, Information and Communication Technology and Mathematics Education for Rural and Regional Australia (SiMERR Australia), established at the University of New England in July 2004 through a federal government grant. With university based ‘hubs’ in each state and territory, SiMERR Australia aims to support rural and regional teachers, students and communities in improving educational outcomes in these subject areas. The purpose of the survey was to identify the key issues affecting these outcomes. The National Survey makes six substantial contributions to our understanding of issues in rural education. First, it focuses specifically on school science, ICT and mathematics education, rather than on education more generally. Second, it compares the different circumstances and needs of teachers across a nationally agreed geographical framework, and quantifies these differences. Third, it compares the circumstances and needs of teachers in schools with different proportions of Indigenous students. Fourth, it provides greater detail than previous studies on the specific needs of schools and teachers in these subject areas. Fifth, the analyses of teacher ‘needs’ have been controlled for the socio-economic background of school locations, resulting in findings that are more tightly associated with geographic location than with economic circumstances. Finally, most previous reports on rural education in Australia were based upon focus interviews, public submissions or secondary analyses of available data. In contrast, the National Survey has generated a sizable body of original quantitative and qualitative data.
Resumo:
Stakeholder engagement is important for successful management of natural resources, both to make effective decisions and to obtain support. However, in the context of coastal management, questions remain unanswered on how to effectively link decisions made at the catchment level with objectives for marine biodiversity and fisheries productivity. Moreover, there is much uncertainty on how to best elicit community input in a rigorous manner that supports management decisions. A decision support process is described that uses the adaptive management loop as its basis to elicit management objectives, priorities and management options using two case studies in the Great Barrier Reef, Australia. The approach described is then generalised for international interest. A hierarchical engagement model of local stakeholders, regional and senior managers is used. The result is a semi-quantitative generic elicitation framework that ultimately provides a prioritised list of management options in the context of clearly articulated management objectives that has widespread application for coastal communities worldwide. The case studies show that demand for local input and regional management is high, but local influences affect the relative success of both engagement processes and uptake by managers. Differences between case study outcomes highlight the importance of discussing objectives prior to suggesting management actions, and avoiding or minimising conflicts at the early stages of the process. Strong contributors to success are a) the provision of local information to the community group, and b) the early inclusion of senior managers and influencers in the group to ensure the intellectual and time investment is not compromised at the final stages of the process. The project has uncovered a conundrum in the significant gap between the way managers perceive their management actions and outcomes, and community's perception of the effectiveness (and wisdom) of these same management actions.
Resumo:
OBJECTIVE: Lower limb amputation is often associated with a high risk of early post-operative mortality. Mortality rates are also increasingly being put forward as a possible benchmark for surgical performance. The primary aim of this systematic review is to investigate early post-operative mortality following a major lower limb amputation in population/regional based studies, and reported factors that might influence these mortality outcomes. METHODS: Embase, PubMed, Cinahl and Psycinfo were searched for publications in any language on 30 day or in hospital mortality after major lower limb amputation in population/regional based studies. PRISMA guidelines were followed. A self developed checklist was used to assess quality and susceptibility to bias. Summary data were extracted for the percentage of the population who died; pooling of quantitative results was not possible because of methodological differences between studies. RESULTS: Of the 9,082 publications identified, results were included from 21. The percentage of the population undergoing amputation who died within 30 days ranged from 7% to 22%, the in hospital equivalent was 4-20%. Transfemoral amputation and older age were found to have a higher proportion of early post-operative mortality, compared with transtibial and younger age, respectively. Other patient factors or surgical treatment choices related to increased early post-operative mortality varied between studies. CONCLUSIONS: Early post-operative mortality rates vary from 4% to 22%. There are very limited data presented for patient related factors (age, comorbidities) that influence mortality. Even less is known about factors related to surgical treatment choices, being limited to amputation level. More information is needed to allow comparison across studies or for any benchmarking of acceptable mortality rates. Agreement is needed on key factors to be reported.
Resumo:
Mechanical stress is an important external factor effecting the development and maintenance of articular cartilage. The metabolite profile of diseased cartilage has been well studied but there is limited information about the variation in metabolite profile of healthy cartilage. With the importance of load in maintaining healthy cartilage, regional differences in metabolite profile associated with differences in load may provide information on how load contributes to the maintenance of healthy cartilage. HR-MAS NMR spectroscopy allows the assessment of tissue samples without modification and was used for assessing the difference in metabolic profile between the load bearing and non-load bearing regions of the bovine articular cartilage. In this preliminary study, we examined cartilage from tibia and femur of four knee joints. Sixteen pairs of 1D-NOESY spectra were acquired. Principle component analysis (PCA) identified chemical shifts responsible for variance. SBASE (AMIX) and the Human Metabolome Database were used in conjunction with previous reported cartilage data for identifying metabolites associated with the PCA results. The major contributors to load-related differences in metabolite profile were N-acetyl groups, lactate and phosphocholine peaks. Integrals of these regions were further analysed using a Student's t-test. In load bearing cartilage regions. N-acetyl groups and phosphocholine were found at significantly higher concentration (p < 0.05 and p < 0.005, respectively) in both femur and tibia, while lactate was reduced in load bearing cartilage (p < 0.005). The results of this pilot HR-MAS NMR study demonstrate its ability to provide useful metabolite information for healthy cartilage.
Resumo:
Teachers working in regional, rural and remote areas of Western Australia often experience a strong sense of geographic and social isolation from peers, colleagues and appropriate support mechanisms due to the huge distances between towns and communities. The projects described here have focused on the use of technology to enhance both teacher and student learning; and assist with Indigenous education and teacher professional learning. Connecting and collaborating through technologies is emerging as a powerful tool for motivating and engaging both teachers and learners within schools. Coupled with the direction of the current Federal Government with the Digital Education Revolution and the Digital Regions initiatives, opportunities for better serving regional, rural and remote communities are discussed, as are some of the current issues and needs related to these schools in Western Australia. The scope of these projects has been such that three guiding principles have been implemented through contextual lenses of varying foci - at the level of an individual, a school, and a community.