877 resultados para constrained controller
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study is to determine whether Brazil's economic growth has been constrained by the balance of payments in the long run. The question underpinning the analysis can be expressed as follows: Was economic growth in the period 1951-2008 constrained by the balance of payments? To answer this question, the study employs the externally constrained growth methodology developed by Lima and Carvalho (2009), among others. The main statistical method used is vector error correction. The conclusion is that the rate of economic growth in Brazil was restricted by the external sector in the period concerned, validating the theory of balance-of-payments growth constraint with regard to the economic history of Brazil.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Robust controller design of a wheelchair mobile via LMI approach to SPR systems with feedback output
Resumo:
This article discusses the design of robust controller applied to Wheelchair Furniture via Linear Matrix Inequalities (LMI), to obtain Strictly Positive Real (SPR) systems. The contributions of this work were the choice of a mathematical model for wheelchair: mobile with uncertainty about the position of the center of gravity (CG), the decoupling of the kinematic and dynamical systems, linearization of the models, the headquarters building of parametric uncertainties, the proposal of the control loop and control law with a specified decay rate.
Resumo:
The study proposes a constrained least square (CLS) pre-distortion scheme for multiple-input single-output (MISO) multiple access ultra-wideband (UWB) systems. In such a scheme, a simple objective function is defined, which can be efficiently solved by a gradient-based algorithm. For the performance evaluation, scenarios CM1 and CM3 of the IEEE 802.15.3a channel model are considered. Results show that the CLS algorithm has a fast convergence and a good trade-off between intersymbol interference (ISI) and multiple access interference (MAI) reduction and signal-to-noise ratio (SNR) preservation, performing better than time-reversal (TR) pre-distortion.
Resumo:
In this work, a method of computing PD stabilising gains for rotating systems is presented based on the D-decomposition technique, which requires the sole knowledge of frequency response functions. By applying this method to a rotating system with electromagnetic actuators, it is demonstrated that the stability boundary locus in the plane of feedback gains can be easily plotted, and the most suitable gains can be found to minimise the resonant peak of the system. Experimental results for a Laval rotor show the feasibility of not only controlling lateral shaft vibration and assuring stability, but also helps in predicting the final vibration level achieved by the closed-loop system. These results are obtained based solely on the input-output response information of the system as a whole.
Resumo:
The design and implementation of a new control scheme for reactive power compensation, voltage regulation and transient stability enhancement for wind turbines equipped with fixed-speed induction generators (IGs) in large interconnected power systems is presented in this study. The low-voltage-ride-through (LVRT) capability is provided by extending the range of the operation of the controlled system to include typical post-fault conditions. A systematic procedure is proposed to design decentralised multi-variable controllers for large interconnected power systems using the linear quadratic (LQ) output-feedback control design method and the controller design procedure is formulated as an optimisation problem involving rank-constrained linear matrix inequality (LMI). In this study, it is shown that a static synchronous compensator (STATCOM) with energy storage system (ESS), controlled via robust control technique, is an effective device for improving the LVRT capability of fixed-speed wind turbines.
Resumo:
Bound-constrained minimization is a subject of active research. To assess the performance of existent solvers, numerical evaluations and comparisons are carried on. Arbitrary decisions that may have a crucial effect on the conclusions of numerical experiments are highlighted in the present work. As a result, a detailed evaluation based on performance profiles is applied to the comparison of bound-constrained minimization solvers. Extensive numerical results are presented and analyzed.
Resumo:
The classical magnetoresistance of a two-dimensional electron gas constrained to non-planar topographies, in antidot lattices, and under the influence of tilted magnetic field in arbitrary direction is numerically studied. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The major goal of this research was the development and implementation of a control system able to avoid collisions during the flight for a mini-quadrotor helicopter, based only on its embedded sensors without changing the environment. However, it is important to highlight that the design aspects must be seriously considered in order to overcome hardware limitations and achieve control simplification. The controllers of a UAV (Unmanned Aerial Vehicle) robot deal with highly unstable dynamics and strong axes coupling. Furthermore, any additional embedded sensor increases the robot total weight and therefore, decreases its operating time. The best balance between embedded electronics and robot operating time is desired. This paper focuses not only on the development and implementation of a collision avoidance controller for a mini-robotic helicopter using only its embedded sensors, but also on the mathematical model that was essential for the controller developing phases. Based on this model we carried out the development of a simulation tool based on MatLab/Simulink that was fundamental for setting the controllers' parameters. This tool allowed us to simulate and improve the OS4 controllers in different modeled environments and test different approaches. After that, the controllers were embedded in the real robot and the results proved to be very robust and feasible. In addition to this, the controller has the advantage of being compatible with future path planners that we are developing.
Resumo:
At each outer iteration of standard Augmented Lagrangian methods one tries to solve a box-constrained optimization problem with some prescribed tolerance. In the continuous world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility of finishing the subproblem resolution without satisfying the theoretical stopping conditions is not contemplated in usual convergence theories. However, in practice, one might not be able to solve the subproblem up to the required precision. This may be due to different reasons. One of them is that the presence of an excessively large penalty parameter could impair the performance of the box-constraint optimization solver. In this paper a practical strategy for decreasing the penalty parameter in situations like the one mentioned above is proposed. More generally, the different decisions that may be taken when, in practice, one is not able to solve the Augmented Lagrangian subproblem will be discussed. As a result, an improved Augmented Lagrangian method is presented, which takes into account numerical difficulties in a satisfactory way, preserving suitable convergence theory. Numerical experiments are presented involving all the CUTEr collection test problems.
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
Resumo:
Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.