912 resultados para atelestite, arsenate, bismuth, Raman spectroscopy, hydroxy group
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
MoO3 is a lamellar material with applications in different areas, as solid lubricants, catalysis, solar cells, etc. In the present work, MoO3 powders, synthesized by the polymeric precursor method, were doped with nickel or cobalt. The powder precursors were characterized by TG/DTA. After calcination between 500 and 700 degrees C, the samples were characterized by X-ray diffraction, infrared and Raman spectroscopy and scanning electron microscopy. beta-MoO3 was obtained after calcination at low temperatures. With the temperature increase, alpha-MoO3 is observed, with a preferential growth of the (0 2k 0) planes, when the material is doped and calcined at 700 degrees C. Doping with nickel increases five times the preferential growth. As a consequence, plate-like particles are observed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Europium(III) Concentration Effect on the Spectroscopic and Photoluminescent Properties of BaMoO4:Eu
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To study the influence of Ga addition on photoinduced effect, GaGeS glasses with constant atomic ratio S/Ge = 2.6 have been prepared. Using Raman spectroscopy, we have reported the effect of Ga on the structural behavior of these glasses. An increase of the glass transition temperature T(g), the linear refractive index and the density have been observed with increasing gallium content. The photoinduced phenomena have been examined through the influence of time exposure and power density, when exposed to above light bandgap (3.53 eV). The correlation between photoinduced phenomena and Ga content in such glasses are shown hereby. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work is to investigate the structural properties of the (Pb1-xErx)TiO3 (PET) powders, with x varying from 0.01 to 0.08, prepared by the polymeric precursor method. Combined X-ray diffraction, Raman spectroscopy and ab initio calculation reveal a diffuse phase-transition of a tetragonal to a cubic phase. The crystalline models built allowed to calculate electronic properties and to analyze the behavior of the doping element in the structure of the material, which are consistent with the experimental results that indicate the beginning of phase-transition from tetragonal to cubic. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Diverse amorphous hydrogenated carbon and similar films containing additional elements were produced by Plasma Enhanced Chemical Vapor Deposition (PECVD) and by Plasma Immersion Ion Implantation and Deposition (PIIID). Thus a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:O:Si were obtained, starting from the same feed gases, using both techniques. The same deposition system supplied with radiofrequency (RF) power was used to produce all the films. A cylindrical stainless steel chamber equipped with circular electrodes mounted horizontally was employed. RF power was fed to the upper electrode; substrates were placed on the lower electrode. For PIIID negative high tension pulses were also applied to the lower electrode. Raman spectroscopy confirmed that all the films are amorphous. Chemical characterization of each pair of films was undertaken using Infrared Reflection Absorption Spectroscopy and X-ray Photoelectron Spectroscopy. The former revealed the presence of specific structures, such as C-H, C-O, O-H. The latter allowed calculation of the ratio of hetero-atoms to carbon atoms in the films, e. g. F:C, N:C, and Si:C. Only relatively small differences in elemental composition were detected between films produced by the two methods. The deposition rate in PIIID is generally reduced in relation to that of PECVD; for a-C:H:Cl films the reduction factor is almost four.