996 resultados para a-Si buffer layer
Resumo:
Peer-reviewed
Resumo:
We report on a field-effect light emitting device based on silicon nanocrystals in silicon oxide deposited by plasma-enhanced chemical vapor deposition. The device shows high power efficiency and long lifetime. The power efficiency is enhanced up to 0.1 %25 by the presence of a silicon nitride control layer. The leakage current reduction induced by this nitride buffer effectively increases the power efficiency two orders of magnitude with regard to similarly processed devices with solely oxide. In addition, the nitride cools down the electrons that reach the polycrystalline silicon gate lowering the formation of defects, which significantly reduces the device degradation.
Resumo:
Stochastic learning processes for a specific feature detector are studied. This technique is applied to nonsmooth multilayer neural networks requested to perform a discrimination task of order 3 based on the ssT-block¿ssC-block problem. Our system proves to be capable of achieving perfect generalization, after presenting finite numbers of examples, by undergoing a phase transition. The corresponding annealed theory, which involves the Ising model under external field, shows good agreement with Monte Carlo simulations.
Resumo:
Nowadays, Wireless Sensor Networks (WSN) arealready a very important data source to obtain data about the environment. Thus, they are key to the creation of Cyber-Physical Systems (CPS). Given the popularity of P2P middlewares as ameans to efficiently process information and distribute services, being able to integrate them to WSN¿s is an interesting proposal. JXTA is a widely used P2P middleware that allows peers to easily exchange information, heavily relying on its main architectural highlight, the capability to organize peers with common interests into peer groups. However, right now, approaches to integrate WSNs to a JXTA network seldom take advantage of peer groups. For this reason, in this paper we present jxSensor, an integrationlayer for sensor motes which facilitates the deployment of CPS¿s under this architecture. This integration has been done taking into account JXTA¿s idiosyncrasies and proposing novel ideas,such as the Virtual Peer, a group of sensors that acts as a single entity within the peer group context.
Resumo:
A simple chemical method has been developed to quantify the silanol groups (º Si-OH) in silica as well as in coated chromatographic supports for use in packed - column Gas Chromatography. After adsorption of 10 mg/mL methylene blue, centrifuging action and filtration, the absorbance of the solution was inversely proportional to the silanol quantity. The difference between the absorbance of the pure solution and that of the solid - free filtrate was related to the silica weight, yielding a quantitative analysis of these groups.
Resumo:
The strength properties of paper coating layer are very important in converting and printing operations. Too great or low strength of the coating can affect several problems in printing. One of the problems caused by the strength of coating is the cracking at the fold. After printing the paper is folded to final form and the pages are stapled together. In folding the paper coating can crack causing aesthetic damage over printed image or in the worst case the centre sheet can fall off in stapling. When folding the paper other side undergoes tensile stresses and the other side compressive stresses. If the difference between these stresses is too high, the coating can crack on the folding. To better predict and prevent cracking at the fold it is good to know the strength properties of coating layer. It has measured earlier the tensile strength of coating layer but not the compressive strength. In this study it was tried to find some way to measure the compressive strength of the coating layer and investigate how different coatings behave in compression. It was used the short span crush test, which is used to measure the in-plane compressive strength of paperboards, to measure the compressive strength of the coating layer. In this method the free span of the specimen is very small which prevent buckling. It was measured the compressive strength of free coating films as well as coated paper. It was also measured the tensile strength and the Bendtsen air permeance of the coating film. The results showed that the shape of pigment has a great effect to the strength of coating. Platy pigment gave much better strength than round or needle-like pigment. On the other hand calcined kaolin, which is also platy but the particles are aggregated, decreased the strength substantially. The difference in the strength can be explained with packing of the particles which is affecting to the porosity and thus to the strength. The platy kaolin packs up much better than others and creates less porous structure. The results also showed that the binder properties have a great effect to the compressive strength of coating layer. The amount of latex and the glass transition temperature, Tg, affect to the strength. As the amount of latex is increasing, the strength of coating is increasing also. Larger amount of latex is binding the pigment particles better together and decreasing the porosity. Compressive strength was increasing when the Tg was increasing because the hard latex gives a stiffer and less elastic film than soft latex.
Resumo:
High-dose carbon-ion-implanted Si samples have been analyzed by infrared spectroscopy, Raman scattering, and x-ray photoelectron spectroscopy (XPS) correlated with transmission electron microscopy. Samples were implanted at room temperature and 500°C with doses between 1017 and 1018 C+/cm2. Some of the samples were implanted at room temperature with the surface covered by a capping oxide layer. Implanting at room temperature leads to the formation of a surface carbon-rich amorphous layer, in addition to the buried implanted layer. The dependence of this layer on the capping oxide suggests this layer to be determined by carbon migration toward the surface, rather than surface contamination. Implanting at 500°C, no carbon-rich surface layer is observed and the SiC buried layer is formed by crystalline ßSiC precipitates aligned with the Si matrix. The concentration of SiC in this region as measured by XPS is higher than for the room-temperature implantation.
Resumo:
In the present work electroluminescence in Si-SiO2 structures has been investigated. Electroluminescence has been recorded in the range of 250-900 nm in a system of electrolyte-insulator-semiconductor at the room temperature. The heating process of electrons in SiO2 was studied and possibility of separation it into two phases has been shown. The nature of luminescence centers and the model of its formation were proposed. This paper also includes consideration of oxide layer formation. Charge transfer mechanisms have been attended as well. The nature of electroluminescence is understood in detail. As a matter of fact, electron traps in silicon are the centers of luminescence. Electroluminescence occurs when electrons move from one trap to another. Thus the radiation of light quantum occurs. These traps appear as a result of the oxide growth. At the same time the bonds deformation of silicon atoms with SiOH groups is not excludes. As a result, dangling bonds are appeared, which are the trapping centers or the centers of luminescence.
Resumo:
Postprint (published version)
Resumo:
An analytical theory to describe the combined effects of the epitaxial layer thickness and the ohmic contact on the noise properties of Schottky barrier diodes is presented. The theory, which provides information on both the local and the global noise properties, takes into account the finite size of the epitaxial layer and the effects of the back ohmic contact, and applies to the whole range of applied bias. It is shown that by scaling down the epitaxial layer thickness, the current regime in which the noise temperature displays a shot-noise-like behavior increases at the cost of reducing the current range in which the thermal-noise-like behavior dominates. This improvement in noise temperature is limited by the effects of the ohmic contact, which appear for large currents. The theory is formulated on general trends, allowing its application to the noise analysis of other semiconductor devices operating under strongly inhomogeneous distributions of the electric field and charge concentrations.
Resumo:
Electron scattering on a thin layer where the potential depends self-consistently on the wave function has been studied. When the amplitude of the incident wave exceeds a certain threshold, a soliton-shaped brightening (darkening) appears on the layer causing diffraction of the wave. Thus the spontaneously formed transverse pattern can be viewed as a self-induced nonlinear quantum screen. Attractive or repulsive nonlinearities result in different phase shifts of the wave function on the screen, which give rise to quite different diffraction patterns. Among others, the nonlinearity can cause self-focusing of the incident wave into a beam, splitting in two "beams," single or double traces with suppressed reflection or transmission, etc.
Resumo:
An analytical theory to describe the combined effects of the epitaxial layer thickness and the ohmic contact on the noise properties of Schottky barrier diodes is presented. The theory, which provides information on both the local and the global noise properties, takes into account the finite size of the epitaxial layer and the effects of the back ohmic contact, and applies to the whole range of applied bias. It is shown that by scaling down the epitaxial layer thickness, the current regime in which the noise temperature displays a shot-noise-like behavior increases at the cost of reducing the current range in which the thermal-noise-like behavior dominates. This improvement in noise temperature is limited by the effects of the ohmic contact, which appear for large currents. The theory is formulated on general trends, allowing its application to the noise analysis of other semiconductor devices operating under strongly inhomogeneous distributions of the electric field and charge concentrations.
Resumo:
En este trabajo se investiga la síntesis de estructuras SiC/Si mediante implantación iónica de carbono en Si. Las implantaciones se han realizado a energías entre 25 y 300 keV y las dosis en el rango lO^^ylO^^ cm , manteniendo el substrato a temperatura ambiente o 500°C. Algunas estructuras han sido recocidas a 1150°C. Los resultados indican que implantando a temperatura ambiente se forma una capa de SiC amorfa y de composición gradual, que recristaliza formando precipitados de ß-SiC con orientaciones aleatorias después del recocido. Además se forma un capa superficial rica en carbono, debida a la difusión del carbono hacia la superficie durante la implantación, y que desaparece con el recocido. Implantando a 500°C se forma directamente una capa con una muy alta densidad de precipitados de ß-SiC orientados preferencialmente con la matriz de silicio. Dada la estabilidad térmica y química de dicha capa se han realizado membranas de SiC mediante técnicas fotolitográficas y ataque químico selectivo, cuya rugosidad superficial es inferior a 6 nm. Estas membranas muestran unos gradientes de tensiones residuales, que prácticamente desaparecen después del recocido. Los resultados confirman la potencialidad de la implantación iónica para la formación de estructuras microme-cánicas de SiC sobre Si.
Resumo:
Se ha utilizado la evaporación secuencial de Cu, Y2O3 y BaF2 para la obtención de láminas delgadas superconductoras de YBa-CuO sobre substratos de Si monocristalino con orientación [100], recubiertos con una lámina barrera de Zr02. Se han estudiado los efectos de la variación de los espesores relativos de las láminas constituyentes y del espesor total de la lámina resultante. Las láminas se han caracterizado mediante medidas de la variación de la resistencia con la temperatura, microscopía electrónoca de barrido, difractometría de rayos X, microson-da electrónica y espectometría de masas de iones secundarios. Las láminas presentan un ligero carácter semiconductor en el estado normal, con temperaturas de inicio de la transición su-perconductora alrededor de 90 K, y resistencia nula, en el mejor de los casos, a 45 K.