913 resultados para Wald tests
Resumo:
This paper investigates the presence of long memory in financiaI time series using four test statistics: V/S, KPSS, KS and modified R/S. There has been a large amount of study on the long memory behavior in economic and financiaI time series. However, there is still no consensus. We argue in this paper that spurious short-term memory may be found due to the incorrect use of data-dependent bandwidth to estimating the longrun variance. We propose a partially adaptive lag truncation procedure that is robust against the presence of long memory under the alternative hypothesis and revisit several economic and financiaI time series using the proposed bandwidth choice. Our results indicate the existence of spurious short memory in real exchange rates when Andrews' formula is employed, but long memory is detected when the proposed lag truncation procedure is used. Using stock market data, we also found short memory in returns and long memory in volatility.
Resumo:
Panel cointegration techniques applied to pooled data for 27 economies for the period 1960-2000 indicate that: i) government spending in education and innovation indicators are cointegrated; ii) education hierarchy is relevant when explaining innovation; and iii) the relation between education and innovation can be obtained after an accommodation of a level structural break.
Resumo:
This paper develops nonparametric tests of independence between two stationary stochastic processes. The testing strategy boils down to gauging the closeness between the joint and the product of the marginal stationary densities. For that purpose, I take advantage of a generalized entropic measure so as to build a class of nonparametric tests of independence. Asymptotic normality and local power are derived using the functional delta method for kernels, whereas finite sample properties are investigated through Monte Carlo simulations.
Resumo:
It is well known that cointegration between the level of two variables (labeled Yt and yt in this paper) is a necessary condition to assess the empirical validity of a present-value model (PV and PVM, respectively, hereafter) linking them. The work on cointegration has been so prevalent that it is often overlooked that another necessary condition for the PVM to hold is that the forecast error entailed by the model is orthogonal to the past. The basis of this result is the use of rational expectations in forecasting future values of variables in the PVM. If this condition fails, the present-value equation will not be valid, since it will contain an additional term capturing the (non-zero) conditional expected value of future error terms. Our article has a few novel contributions, but two stand out. First, in testing for PVMs, we advise to split the restrictions implied by PV relationships into orthogonality conditions (or reduced rank restrictions) before additional tests on the value of parameters. We show that PV relationships entail a weak-form common feature relationship as in Hecq, Palm, and Urbain (2006) and in Athanasopoulos, Guillén, Issler and Vahid (2011) and also a polynomial serial-correlation common feature relationship as in Cubadda and Hecq (2001), which represent restrictions on dynamic models which allow several tests for the existence of PV relationships to be used. Because these relationships occur mostly with nancial data, we propose tests based on generalized method of moment (GMM) estimates, where it is straightforward to propose robust tests in the presence of heteroskedasticity. We also propose a robust Wald test developed to investigate the presence of reduced rank models. Their performance is evaluated in a Monte-Carlo exercise. Second, in the context of asset pricing, we propose applying a permanent-transitory (PT) decomposition based on Beveridge and Nelson (1981), which focus on extracting the long-run component of asset prices, a key concept in modern nancial theory as discussed in Alvarez and Jermann (2005), Hansen and Scheinkman (2009), and Nieuwerburgh, Lustig, Verdelhan (2010). Here again we can exploit the results developed in the common cycle literature to easily extract permament and transitory components under both long and also short-run restrictions. The techniques discussed herein are applied to long span annual data on long- and short-term interest rates and on price and dividend for the U.S. economy. In both applications we do not reject the existence of a common cyclical feature vector linking these two series. Extracting the long-run component shows the usefulness of our approach and highlights the presence of asset-pricing bubbles.
Resumo:
This paper considers tests which maximize the weighted average power (WAP). The focus is on determining WAP tests subject to an uncountable number of equalities and/or inequalities. The unifying theory allows us to obtain tests with correct size, similar tests, and unbiased tests, among others. A WAP test may be randomized and its characterization is not always possible. We show how to approximate the power of the optimal test by sequences of nonrandomized tests. Two alternative approximations are considered. The rst approach considers a sequence of similar tests for an increasing number of boundary conditions. This discretization allows us to implement the WAP tests in practice. The second method nds a sequence of tests which approximate the WAP test uniformly. This approximation allows us to show that WAP similar tests are admissible. The theoretical framework is readily applicable to several econometric models, including the important class of the curved-exponential family. In this paper, we consider the instrumental variable model with heteroskedastic and autocorrelated errors (HAC-IV) and the nearly integrated regressor model. In both models, we nd WAP similar and (locally) unbiased tests which dominate other available tests.
Resumo:
This paper deals with the estimation and testing of conditional duration models by looking at the density and baseline hazard rate functions. More precisely, we foeus on the distance between the parametric density (or hazard rate) function implied by the duration process and its non-parametric estimate. Asymptotic justification is derived using the functional delta method for fixed and gamma kernels, whereas finite sample properties are investigated through Monte Carlo simulations. Finally, we show the practical usefulness of such testing procedures by carrying out an empirical assessment of whether autoregressive conditional duration models are appropriate to oIs for modelling price durations of stocks traded at the New York Stock Exchange.
Resumo:
A new multivariate test for the detection ofunit roots is proposed. Use is made ofthe possible correlations between the disturbances of difIerent series, and constrained and unconstrained SURE estimators are employed. The corresponding asymptotic distributions, for the case oftwo series, are obtained and a table with criticai vaIues is generated. Some simulations indivate that the procedure performs better than the existing alternatives.
Resumo:
Theories can be produced by individuals seeking a good reputation of knowledge. Hence, a significant question is how to test theories anticipating that they might have been produced by (potentially uninformed) experts who prefer their theories not to be rejected. If a theory that predicts exactly like the data generating process is not rejected with high probability then the test is said to not reject the truth. On the other hand, if a false expert, with no knowledge over the data generating process, can strategically select theories that will not be rejected then the test can be ignorantly passed. These tests have limited use because they cannot feasibly dismiss completely uninformed experts. Many tests proposed in the literature (e.g., calibration tests) can be ignorantly passed. Dekel and Feinberg (2006) introduced a class of tests that seemingly have some power of dismissing uninformed experts. We show that some tests from their class can also be ignorantly passed. One of those tests, however, does not reject the truth and cannot be ignorantly passed. Thus, this empirical test can dismiss false experts.We also show that a false reputation of knowledge can be strategically sustained for an arbitrary, but given, number of periods, no matted which test is used (provided that it does not reject the truth). However, false experts can be discredited, even with bounded data sets, if the domain of permissible theories is mildly restricted.
Resumo:
This paper develops a general method for constructing similar tests based on the conditional distribution of nonpivotal statistics in a simultaneous equations model with normal errors and known reducedform covariance matrix. The test based on the likelihood ratio statistic is particularly simple and has good power properties. When identification is strong, the power curve of this conditional likelihood ratio test is essentially equal to the power envelope for similar tests. Monte Carlo simulations also suggest that this test dominates the Anderson- Rubin test and the score test. Dropping the restrictive assumption of disturbances normally distributed with known covariance matrix, approximate conditional tests are found that behave well in small samples even when identification is weak.
Resumo:
This paper considers two-sided tests for the parameter of an endogenous variable in an instrumental variable (IV) model with heteroskedastic and autocorrelated errors. We develop the nite-sample theory of weighted-average power (WAP) tests with normal errors and a known long-run variance. We introduce two weights which are invariant to orthogonal transformations of the instruments; e.g., changing the order in which the instruments appear. While tests using the MM1 weight can be severely biased, optimal tests based on the MM2 weight are naturally two-sided when errors are homoskedastic. We propose two boundary conditions that yield two-sided tests whether errors are homoskedastic or not. The locally unbiased (LU) condition is related to the power around the null hypothesis and is a weaker requirement than unbiasedness. The strongly unbiased (SU) condition is more restrictive than LU, but the associated WAP tests are easier to implement. Several tests are SU in nite samples or asymptotically, including tests robust to weak IV (such as the Anderson-Rubin, score, conditional quasi-likelihood ratio, and I. Andrews' (2015) PI-CLC tests) and two-sided tests which are optimal when the sample size is large and instruments are strong. We refer to the WAP-SU tests based on our weights as MM1-SU and MM2-SU tests. Dropping the restrictive assumptions of normality and known variance, the theory is shown to remain valid at the cost of asymptotic approximations. The MM2-SU test is optimal under the strong IV asymptotics, and outperforms other existing tests under the weak IV asymptotics.
Resumo:
In this work we focus on tests for the parameter of an endogenous variable in a weakly identi ed instrumental variable regressionmodel. We propose a new unbiasedness restriction for weighted average power (WAP) tests introduced by Moreira and Moreira (2013). This new boundary condition is motivated by the score e ciency under strong identi cation. It allows reducing computational costs of WAP tests by replacing the strongly unbiased condition. This latter restriction imposes, under the null hypothesis, the test to be uncorrelated to a given statistic with dimension given by the number of instruments. The new proposed boundary condition only imposes the test to be uncorrelated to a linear combination of the statistic. WAP tests under both restrictions to perform similarly numerically. We apply the di erent tests discussed to an empirical example. Using data from Yogo (2004), we assess the e ect of weak instruments on the estimation of the elasticity of inter-temporal substitution of a CCAPM model.
Resumo:
This paper comprises an investigation on the influence of the variable family backgrounds (father school level, mother school level and family income) over the pupil s performance in admissions examination (entrance test or PROITEC) at Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN). From that point of view, the main goal of this research is to analyze the influence of the family background as a determiner of the pupil´s performance in the access to Technical and Professional education at IFRN. Secondary data were used from two databases (entrance test and PROITEC) adding up to 19.226 observations to the vacancies offered in the year of 2013. Aiming at achieving the proposed goal, a conceptual model composed of three hypothesis was developed. The results were presented in four stages: stage I presentation of the descriptive statistical results of the two databases; stage II separation of the campi in clusters; stage III analysis of multiple regressions; stage IV analysis of the logistics regressions. Two statistical tests were used to validate the hypothesis: T-test and Wald test. Hypothesis 1 and 2 were confirmed and H3 was refused. The results presented favorable causal connections to the family income and the father school level variables (with bigger effect for fathers with a higher education degree). The mother school level variable did not provide statistical significance for this research. Based on this result, after this work, this institution is to develop a strategic plan to assist in the success rate of students preparing diagnoses in order to diminish the effects of the variables that impacted negatively
Resumo:
The effect of competition is an important source of variation in breeding experiments. This study aimed to compare the selection of plants of open-pollinated families of Eucalyptus with and without the use of competition covariables. Genetic values were determined for each family and tree and for the traits height, diameter at breast height and timber volume in a randomized block design, resulting in the variance components, genetic parameters, selection gains, effective size and selection coincidence, with and without the use of covariables. Intergenotypic competition is an important factor of environmental variation. The use of competition covariables generally reduces the estimates of variance components and influences genetic gains in the studied traits. Intergenotypic competition biases the selection of open-pollinated eucalypt progenies, and can result in an erroneous choice of superior genotypes; the inclusion of covariables in the model reduces this influence.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)