905 resultados para Vehicle counting and classification
Resumo:
In contrast to the definition of metabolic syndrome (MetS) in adults, there is no standard definition of MetS in pediatric populations. We aimed to assess the differences in the prevalence of MetS in children and adolescents aged 9–17 years in the city of Bogota (Colombia) using four different operational definitions for these age groups and to examine the associated variables. A total of 673 children and 1,247 adolescents attending public schools in Bogota (54.4% girls; age range 9–17.9 years) were included. The prevalence of MetS was determined by the definitions provided by the International Diabetes Federation (IDF) and three published studies by Cook et al., de Ferranti et al., and Ford et al. The prevalence of MetS was 0.3%, 6.3%, 7.8%, and 11.0% according to the IDF, Cook et al., Ford et al., and de Ferranti et al. definitions, respectively. The most prevalent components were low high-density lipoprotein cholesterol and high triglyceride levels, whereas the least prevalent components were abdominal obesity and hyperglycemia. Overall, the prevalence of MetS was higher in obese than in non-obese schoolchildren. In conclusion, MetS diagnoses in schoolchildren strongly depend on the definition chosen. These findings may be relevant to health promotion efforts for Colombian youth to develop prospective studies and to define which cut-offs are the best indicators of future morbidity.
Resumo:
The “dicótilo-palmácea” mixed forest is found in the fluvial plains (floodplains) of watercourses on the Ceará semiarid region (Brazil), distinguishing from the surrounding vegetation (caatinga) by the prevalence of larger tree species. In the river’s margins, presenting high variability in the extension of the riverbanks, arise floodplains in pedologic complexes mainly composed by neossols and argissols, resulting from the deposition of sediments. In these areas of high fertility soils and subjected to flooding during part of the year, it develops a particular type of riparian vegetation dominated by carnauba palm tree (Copernicia prunifera (Mill.) H.E. Moore) forming a particular type of riparian forest, designated by carnaubal palm forest. We aimed to carry out floristic and phytosociological surveys of carnauba palm forests located in the northern region of Ceará. The classical sigmatist method of Braun-Blanquet was applied and classification analysis (Twinspan) was perfomed. The field work occurred in March 2014 and 2016 in eight areas: Fazenda Pedra Branca (03º 37’ 10’’ S e 40º 18’ 30’’ W, 104 m asl), Vale do Rio Bom Jesus (04º 04’ 42’’ S e 39º 57’ 08’’ W, 200 m asl), Lagoa do Peixe (03º 56’ 28’’ S e 40º 23’ 23’’ W, 97 m asl), Fazenda Peixes (04º 06’ 03’’ S e 40º 32’ 43’’ W, 114 m asl), Fazenda Natividade (04º 02’ 50’’ S e 40º 29’ 03’’ W, 109 m asl), Fazenda Morro Alto (02º 53’ 42’’ S e 39º 54’ 51’’ W, 16 m asl), Fazenda Araticum (03º 04’ 58’’ S e 40º 09’ 36’’ W, 19 m asl) and Fazenda Experimental da UVA (03º 37' 04'' S 40º 18' 18'' W, 200 m asl).The floristic list consists of 170 species, distributed between 127 genera and 50 families. Twenty-seven Brazilian endemic species were identified, from which 8 are exclusive of the Caatinga biome. The Fabaceae was the most representative family, with the highest number of species (28), followed by Poaceae (17), Malvaceaea (14), Euphorbiaceae (12), Asteraceaea (9), Convolvulaceae and Rubiaceae (9). The dominant life forms were therophytes (34%), phanerophytes (30%) and chamaephytes (18%). Two communities were identified as a result of the classification analysis using the Twinspan.
Resumo:
Pesticides applications have been described by many researches as a very inefficient process. In some cases, there are reports that only 0.02% of the applied products are used for the effective control of the problem. The main factor that influences pesticides applications is the droplet size formed on spraying nozzles. Many parameters affects the dynamic of the droplets, like wind, temperature, relative humidity, and others. Small droplets are biologically more active, but they are affected by evaporation and drift. On the other hand, the great droplets do not promote a good distribution of the product on the target. In this sense, associated with the risk of non target areas contamination and with the high costs involved in applications, the knowledge of the droplet size is of fundamental importance in the application technology. When sophisticated technology for droplets analysis is unavailable, is common the use of artificial targets like water-sensitive paper to sample droplets. On field sampling, water-sensitive papers are placed on the trials where product will be applied. When droplets impinging on it, the yellow surface of this paper will be stained dark blue, making easy their recognition. Collected droplets on this papers have different kinds of sizes. In this sense, the determination of the droplet size distribution gives a mass distribution of the material and so, the efficience of the application of the product. The stains produced by droplets shows a spread factor proportional to their respectives initial sizes. One of methodologies to analyse the droplets is a counting and measure of the droplets made in microscope. The Porton N-G12 graticule, that shows equaly spaces class intervals on geometric progression of square 2, are coulpled to the lens of the microscope. The droplet size parameters frequently used are the Volumetric Median Diameter (VMD) and the Numeric Median Diameter. On VMD value, a representative droplets sample is divided in two equal parts of volume, in such away one part contains droplets of sizes smaller than VMD and the other part contains droplets of sizes greater that VMD. The same process is done to obtaining the NMD, which divide the sample in two equal parts in relation to the droplets size. The ratio between VMD and NMD allows the droplets uniformity evaluation. After that, the graphics of accumulated probability of the volume and size droplets are plotted on log scale paper (accumulated probability versus median diameter of each size class). The graphics provides the NMD on the x-axes point corresponding to the value of 50% founded on the y-axes. All this process is very slow and subjected to operator error. So, in order to decrease the difficulty envolved with droplets measuring it was developed a numeric model, implemented on easy and accessfull computational language, which allows approximate VMD and NMD values, with good precision. The inputs to this model are the frequences of the droplets sizes colected on the water-sensitive paper, observed on the Porton N-G12 graticule fitted on microscope. With these data, the accumulated distribution of the droplet medium volumes and sizes are evaluated. The graphics obtained by plotting this distributions allow to obtain the VMD and NMD using linear interpolation, seen that on the middle of the distributions the shape of the curves are linear. These values are essential to evaluate the uniformity of droplets and to estimate the volume deposited on the observed paper by the density (droplets/cm2). This methodology to estimate the droplets volume was developed by 11.0.94.224 Project of the CNPMA/EMBRAPA. Observed data of herbicides aerial spraying samples, realized by Project on Pelotas/RS county, were used to compare values obtained manual graphic method and with those obtained by model has shown, with great precision, the values of VMD and NMD on each sampled collector, allowing to estimate a quantities of deposited product and, by consequence, the quantities losses by drifty. The graphics of variability of VMD and NMD showed that the quantity of droplets that reachs the collectors had a short dispersion, while the deposited volume shows a great interval of variation, probably because the strong action of air turbulence on the droplets distribution, enfasizing the necessity of a deeper study to verify this influences on drift.
Resumo:
Isolated DC-DC converters play a significant role in fast charging and maintaining the variable output voltage for EV applications. This study aims to investigate the different Isolated DC-DC converters for onboard and offboard chargers, then, once the topology is selected, study the control techniques and, finally, achieve a real-time converter model to accomplish Hardware-In-The-Loop (HIL) results. Among the different isolated DC-DC topologies, the Dual Active Bridge (DAB) converter has the advantage of allowing bidirectional power flow, which enables operating in both Grid to Vehicle (G2V) and Vehicle to Grid (V2G) modalities. Recently, DAB has been used in the offboard chargers for high voltage applications due to SiC and GaN MOSFETs; this new technology also allows the utilization of higher switching frequencies. By empowering soft switching techniques to reduce switching losses, higher switching frequency operation is possible in DAB. There are four phase shift control techniques for the DAB converter. They are Single Phase shift, Extended Phase shift, Dual Phase shift, Triple Phase shift controls. This thesis considers two control strategies; Single-Phase, and Dual-Phase shifts, to understand the circulating currents, power losses, and output capacitor size reduction in the DAB. Hardware-In-The-Loop (HIL) experiments are carried out on both controls with high switching frequencies using the PLECS software tool and the RT box supporting the PLECS. Root Mean Square Error is also calculated for steady-state values of output voltage with different sampling frequencies in both the controls to identify the achievable sampling frequency in real-time. DSP implementation is also executed to emulate the optimized DAB converter design, and final real-time simulation results are discussed for both the Single-Phase and Dual-Phase shift controls.
1° level of automation: the effectiveness of adaptive cruise control on driving and visual behaviour
Resumo:
The research activities have allowed the analysis of the driver assistance systems, called Advanced Driver Assistance Systems (ADAS) in relation to road safety. The study is structured according to several evaluation steps, related to definite on-site tests that have been carried out with different samples of users, according to their driving experience with the ACC. The evaluation steps concern: •The testing mode and the choice of suitable instrumentation to detect the driver’s behaviour in relation to the ACC. •The analysis modes and outputs to be obtained, i.e.: - Distribution of attention and inattention; - Mental workload; - The Perception-Reaction Time (PRT), the Time To Collision (TTC) and the Time Headway (TH). The main purpose is to assess the interaction between vehicle drivers and ADAS, highlighting the inattention and variation of the workloads they induce regarding the driving task. The research project considered the use of a system for monitoring visual behavior (ASL Mobile Eye-XG - ME), a powerful GPS that allowed to record the kinematic data of the vehicle (Racelogic Video V-BOX) and a tool for reading brain activity (Electroencephalographic System - EEG). Just during the analytical phase, a second and important research objective was born: the creation of a graphical interface that would allow exceeding the frame count limit, making faster and more effective the labeling of the driver’s points of view. The results show a complete and exhaustive picture of the vehicle-driver interaction. It has been possible to highlight the main sources of criticalities related to the user and the vehicle, in order to concretely reduce the accident rate. In addition, the use of mathematical-computational methodologies for the analysis of experimental data has allowed the optimization and verification of analytical processes with neural networks that have made an effective comparison between the manual and automatic methodology.
Resumo:
In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.
Resumo:
Vision systems are powerful tools playing an increasingly important role in modern industry, to detect errors and maintain product standards. With the enlarged availability of affordable industrial cameras, computer vision algorithms have been increasingly applied in industrial manufacturing processes monitoring. Until a few years ago, industrial computer vision applications relied only on ad-hoc algorithms designed for the specific object and acquisition setup being monitored, with a strong focus on co-designing the acquisition and processing pipeline. Deep learning has overcome these limits providing greater flexibility and faster re-configuration. In this work, the process to be inspected consists in vials’ pack formation entering a freeze-dryer, which is a common scenario in pharmaceutical active ingredient packaging lines. To ensure that the machine produces proper packs, a vision system is installed at the entrance of the freeze-dryer to detect eventual anomalies with execution times compatible with the production specifications. Other constraints come from sterility and safety standards required in pharmaceutical manufacturing. This work presents an overview about the production line, with particular focus on the vision system designed, and about all trials conducted to obtain the final performance. Transfer learning, alleviating the requirement for a large number of training data, combined with data augmentation methods, consisting in the generation of synthetic images, were used to effectively increase the performances while reducing the cost of data acquisition and annotation. The proposed vision algorithm is composed by two main subtasks, designed respectively to vials counting and discrepancy detection. The first one was trained on more than 23k vials (about 300 images) and tested on 5k more (about 75 images), whereas 60 training images and 52 testing images were used for the second one.
Resumo:
Hand gesture recognition based on surface electromyography (sEMG) signals is a promising approach for the development of intuitive human-machine interfaces (HMIs) in domains such as robotics and prosthetics. The sEMG signal arises from the muscles' electrical activity, and can thus be used to recognize hand gestures. The decoding from sEMG signals to actual control signals is non-trivial; typically, control systems map sEMG patterns into a set of gestures using machine learning, failing to incorporate any physiological insight. This master thesis aims at developing a bio-inspired hand gesture recognition system based on neuromuscular spike extraction rather than on simple pattern recognition. The system relies on a decomposition algorithm based on independent component analysis (ICA) that decomposes the sEMG signal into its constituent motor unit spike trains, which are then forwarded to a machine learning classifier. Since ICA does not guarantee a consistent motor unit ordering across different sessions, 3 approaches are proposed: 2 ordering criteria based on firing rate and negative entropy, and a re-calibration approach that allows the decomposition model to retain information about previous sessions. Using a multilayer perceptron (MLP), the latter approach results in an accuracy up to 99.4% in a 1-subject, 1-degree of freedom scenario. Afterwards, the decomposition and classification pipeline for inference is parallelized and profiled on the PULP platform, achieving a latency < 50 ms and an energy consumption < 1 mJ. Both the classification models tested (a support vector machine and a lightweight MLP) yielded an accuracy > 92% in a 1-subject, 5-classes (4 gestures and rest) scenario. These results prove that the proposed system is suitable for real-time execution on embedded platforms and also capable of matching the accuracy of state-of-the-art approaches, while also giving some physiological insight on the neuromuscular spikes underlying the sEMG.
Resumo:
Worldwide, biodiversity is decreasing due to climate change, habitat fragmentation and agricultural intensification. Bees are essential crops pollinator, but their abundance and diversity are decreasing as well. For their conservation, it is necessary to assess the status of bee population. Field data collection methods are expensive and time consuming thus, recently, new methods based on remote sensing are used. In this study we tested the possibility of using flower cover diversity estimated by UAV images (FCD-UAV) to assess bee diversity and abundance in 10 agricultural meadows in the Netherlands. In order to do so, field data of flower and bee diversity and abundance were collected during a campaign in May 2021. Furthermore, RGB images of the areas have been collected using Unmanned Aerial Vehicle (UAV) and post-processed into orthomosaics. Lastly, Random Forest machine learning algorithm was applied to estimate FCD of the species detected in each field. Resulting FCD was expressed with Shannon and Simpson diversity indices, which were successively correlated to bee Shannon and Simpson diversity indices, abundance and species richness. The results showed a positive relationship between FCD-UAV and in-situ collected data about bee diversity, evaluated with Shannon index, abundance and species richness. The strongest relationship was found between FCD (Shannon Index) and bee abundance with R2=0.52. Following, good correlations were found with bee species richness (R2=0.39) and bee diversity (R2=0.37). R2 values of the relationship between FCD (Simpson Index) and bee abundance, species richness and diversity were slightly inferior (0.45, 0.37 and 0.35, respectively). Our results suggest that the proposed method based on the coupling of UAV imagery and machine learning for the assessment of flower species diversity could be developed into valuable tools for large-scale, standardized and cost-effective monitoring of flower cover and of the habitat quality for bees.
Resumo:
Matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) has been widely used for the identification and classification of microorganisms based on their proteomic fingerprints. However, the use of MALDI-TOF MS in plant research has been very limited. In the present study, a first protocol is proposed for metabolic fingerprinting by MALDI-TOF MS using three different MALDI matrices with subsequent multivariate data analysis by in-house algorithms implemented in the R environment for the taxonomic classification of plants from different genera, families and orders. By merging the data acquired with different matrices, different ionization modes and using careful algorithms and parameter selection, we demonstrate that a close taxonomic classification can be achieved based on plant metabolic fingerprints, with 92% similarity to the taxonomic classifications found in literature. The present work therefore highlights the great potential of applying MALDI-TOF MS for the taxonomic classification of plants and, furthermore, provides a preliminary foundation for future research.
Resumo:
Chemometric activities in Brazil are described according to three phases: before the existence of microcomputers in the 1970s, through the initial stages of microcomputer use in the 1980s and during the years of extensive microcomputer applications of the ´90s and into this century. Pioneering activities in both the university and industry are emphasized. Active research areas in chemometrics are cited including experimental design, pattern recognition and classification, curve resolution for complex systems and multivariate calibration. New trends in chemometrics, especially higher order methods for treating data, are emphasized.
Resumo:
Fundamental aspects of the conception and applications of ecomaterials, in particular porous materials in the perspective of green chemistry are discussed in this paper. General recommendations for description and classification of porous materials are reviewed briefly. By way of illustration, some case studies of materials design and applications in pollution detection and remediation are described. It is shown here how different materials developed by our groups, such as porous glasses, ecomaterials from biomass and anionic clays were programmed to perform specific functions. A discussion of the present and future of ecomaterials in green chemistry is presented along with important key goals.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
OBJECTIVE: Despite the relevance of irritability emotions to the treatment, prognosis and classification of psychiatric disorders, the neurobiological basis of this emotional state has been rarely investigated to date. We assessed the brain circuitry underlying personal script-driven irritability in healthy subjects (n = 11) using functional magnetic resonance imaging. METHOD: Blood oxygen level-dependent signal changes were recorded during auditory presentation of personal scripts of irritability in contrast to scripts of happiness or neutral emotional content. Self-rated emotional measurements and skin conductance recordings were also obtained. Images were acquired using a 1,5T magnetic resonance scanner. Brain activation maps were constructed from individual images, and between-condition differences in the mean power of experimental response were identified by using cluster-wise nonparametric tests. RESULTS: Compared to neutral scripts, increased blood oxygen level-dependent signal during irritability scripts was detected in the left subgenual anterior cingulate cortex, and in the left medial, anterolateral and posterolateral dorsal prefrontal cortex (cluster-wise p-value < 0.05). While the involvement of the subgenual cingulate and dorsal anterolateral prefrontal cortices was unique to the irritability state, increased blood oxygen level-dependent signal in dorsomedial and dorsal posterolateral prefrontal regions were also present during happiness induction. CONCLUSION: Irritability induction is associated with functional changes in a limited set of brain regions previously implicated in the mediation of emotional states. Changes in prefrontal and cingulate areas may be related to effortful cognitive control aspects that gain salience during the emergence of irritability.
Resumo:
O objetivo do estudo foi mensurar os gastos diretos do Sistema Único de Saúde (SUS) com internações por causas externas em São José dos Campos, São Paulo, Brasil. Foram estudadas as internações por lesões decorrentes de causas externas, respectivamente capítulos XIX e XX da CID-10, no primeiro semestre de 2003, no Hospital Municipal Dr. José de Carvalho Florence. Foram analisados os valores pagos através do SUS, após a verificação da qualidade dos dados nos prontuários de 976 internações. Os maiores gastos totais foram por internações decorrentes de acidentes de transporte e quedas. O maior gasto médio de internação foi por acidentes de transporte (R$ 614,63), seguido das agressões (R$ 594,90). As lesões que representaram maior gasto médio foram as fraturas de pescoço (R$ 1.191,42) e traumatismo intracraniano (R$ 1.000,44). As internações com maior custo-dia foram fraturas do crânio e dos ossos da face (R$ 166,72) e traumatismo intra-abdominal (R$ 148,26). Os resultados encontrados demonstraram que os acidentes de transporte, as quedas e as agressões são importantes fontes de gastos com internações por causas externas no município.