911 resultados para Transmission power systems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper an artificial neural network (ANN) based methodology is proposed for (a) solving the basic load flow, (b) solving the load flow considering the reactive power limits of generation (PV) buses, (c) determining a good quality load flow starting point for ill-conditioned systems, and (d) computing static external equivalent circuits. An analysis of the input data required as well as the ANN architecture is presented. A multilayer perceptron trained with the Levenberg-Marquardt second order method is used. The proposed methodology was tested with the IEEE 30- and 57-bus, and an ill-conditioned 11-bus system. Normal operating conditions (base case) and several contingency situations including different load and generation scenarios have been considered. Simulation results show the excellent performance of the ANN for solving problems (a)-(d). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Considerando a crescente utilização de técnicas de processamento digital de sinais em aplicações de sistemas eletrônicos e ou de potência, este artigo discute o uso da Transformada Discreta de Fourier Recursiva (TDFR) para identificação do ângulo de fase, da freqüência e da amplitude das tensões fundamentais da rede, independente de distorções na forma de onda ou de transitórios na amplitude. Será discutido que, se a freqüência fundamental das tensões medidas coincide com a freqüência a qual a TDF foi projetada, um simples algoritmo TDFR é completamente capaz de fornecer as informações requeridas de fase, freqüência e amplitude. Dois algoritmos adicionais são propostos para garantir seu desempenho correto quando a freqüência difere do seu valor nominal: um deles para a correção do erro de fase do sinal de saída e outro para identificação da amplitude do componente fundamental. Além disto, destaca-se que através dos algoritmos propostos, independentemente do sinal de entrada, a identificação do componente fundamental pode ser realizada em, no máximo, 2 ciclos da rede. Uma análise dos resultados evidenciados pela TDFR foi desenvolvida através de simulações computacionais. Também serão apresentados resultados experimentais referentes ao sincronismo de um gerador síncrono com a rede elétrica, através dos sinais fornecidos pela TDFR.
Resumo:
In this paper, short term hydroelectric scheduling is formulated as a network flow optimization model and solved by interior point methods. The primal-dual and predictor-corrector versions of such interior point methods are developed and the resulting matrix structure is explored. This structure leads to very fast iterations since it avoids computation and factorization of impedance matrices. For each time interval, the linear algebra reduces to the solution of two linear systems, either to the number of buses or to the number of independent loops. Either matrix is invariant and can be factored off-line. As a consequence of such matrix manipulations, a linear system which changes at each iteration has to be solved, although its size is reduced to the number of generating units and is not a function of time intervals. These methods were applied to IEEE and Brazilian power systems, and numerical results were obtained using a MATLAB implementation. Both interior point methods proved to be robust and achieved fast convergence for all instances tested. (C) 2004 Elsevier Ltd. All rights reserved.
Analytical and Monte Carlo approaches to evaluate probability distributions of interruption duration
Resumo:
Regulatory authorities in many countries, in order to maintain an acceptable balance between appropriate customer service qualities and costs, are introducing a performance-based regulation. These regulations impose penalties-and, in some cases, rewards-that introduce a component of financial risk to an electric power utility due to the uncertainty associated with preserving a specific level of system reliability. In Brazil, for instance, one of the reliability indices receiving special attention by the utilities is the maximum continuous interruption duration (MCID) per customer.This parameter is responsible for the majority of penalties in many electric distribution utilities. This paper describes analytical and Monte Carlo simulation approaches to evaluate probability distributions of interruption duration indices. More emphasis will be given to the development of an analytical method to assess the probability distribution associated with the parameter MCID and the correspond ng penalties. Case studies on a simple distribution network and on a real Brazilian distribution system are presented and discussed.
Resumo:
This paper describes a methodology for solving efficiently the sparse network equations on multiprocessor computers. The methodology is based on the matrix inverse factors (W-matrix) approach to the direct solution phase of A(x) = b systems. A partitioning scheme of W-matrix , based on the leaf-nodes of the factorization path tree, is proposed. The methodology allows the performance of all the updating operations on vector b in parallel, within each partition, using a row-oriented processing. The approach takes advantage of the processing power of the individual processors. Performance results are presented and discussed.
Resumo:
This paper proposes a methodology to incorporate voltage/reactive representation to Short Term Generation Scheduling (STGS) models, which is based on active/reactive decoupling characteristics of power systems. In such approach STGS is decoupled in both Active (AGS) and Reactive (RGS) Generation Scheduling models. AGS model establishes an initial active generation scheduling through a traditional dispatch model. The scheduling proposed by AGS model is evaluated from the voltage/reactive points of view, through the proposed RGS model. RGS is formulated as a sequence of T nonlinear OPF problems, solved separately but taking into account load tracking between consecutive time intervals. This approach considerably reduces computational effort to perform the reactive analysis of the RGS problem as a whole. When necessary, RGS model is capable to propose active generation redispatches, such that critical reactive problems (in which all reactive variables have been insufficient to control the reactive problems) can be overcome. The formulation and solution methodology proposed are evaluated in the IEEE30 system in two case studies. These studies show that the methodology is robust enough to incorporate reactive aspects to STGS problem.
Resumo:
The capacitor placement (replacement) problem for radial distribution networks determines capacitor types, sizes, locations and control schemes. Optimal capacitor placement is a hard combinatorial problem that can be formulated as a mixed integer nonlinear program. Since this is a NP complete problem (Non Polynomial time) the solution approach uses a combinatorial search algorithm. The paper proposes a hybrid method drawn upon the Tabu Search approach, extended with features taken from other combinatorial approaches such as genetic algorithms and simulated annealing, and from practical heuristic approaches. The proposed method has been tested in a range of networks available in the literature with superior results regarding both quality and cost of solutions.
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Within a weekly market horizon, this paper considers a power producer that sells its energy both in the pool and through weekly forward contracts. The paper provides a methodology that allows the producer to derive the self-scheduling of its production units, to select weekly forward contracts, and to obtain the offering strategy for Monday's pool. The proposed technique is based on stochastic programming and allows the producer to maximize its expected profit while controlling the risk of profit variability. A comprehensive case study is used to illustrate the characteristics of the proposed methodology. Appropriate conclusions are finally drawn.