943 resultados para Transmission geometries
Resumo:
The Wigner transition in a jellium model of cylindrical nanowires has been investigated by density-functional computations using the local spin-density approximation. A wide range of background densities rho(b) has been explored from the nearly ideal metallic regime (r(s)=[3/4 pi rho(b)](1/3)=1) to the high correlation limit (r(s)=100). Computations have been performed using an unconstrained plane wave expansion for the Kohn-Sham orbitals and a large simulation cell with up to 480 electrons. The electron and spin distributions retain the cylindrical symmetry of the Hamiltonian at high density, while electron localization and spin polarization arise nearly simultaneously in low-density wires (r(s)similar to 30). At sufficiently low density (r(s)>= 40), the ground-state electron distribution is the superposition of well defined and nearly disjoint droplets, whose charge and spin densities integrate almost exactly to one electron and 1/2 mu(B), respectively. Droplets are arranged on radial shells and define a distorted lattice whose structure is intermediate between bcc and fcc. Dislocations and grain boundaries are apparent in the droplets' configuration found by our simulations. Our computations aim at modeling the behavior of experimental low-carried density systems made of lightly doped semiconductor nanostructures or conducting polymers.
Resumo:
Background
Resumo:
In this article we propose a technique for dual-band Class-E power amplifier design using composite right/left-handed transmission lines, CRLH TLs. Design equations are presented and design procedures are elaborated. Because of the nonlinear phase dispersion characteristic of CRLH TLs, the single previous attempt at applying this method to dual bond Class-E amplifier design was not sufficient to simultaneously satisfy, the minimum requirement of Class-E impedances at both the fundamental and the second harmonic frequencies. This article rectifies this situation. A design example illustrating the synthesis procedure for a 0.5W-5V dual band Class-E amplifier circuit simultaneously operated at 900 MHz and 2.4 GHz is given and compared with ADS simulation.
Resumo:
This paper reports on the design methodology and experimental characterization of the inverse Class-E power amplifier. A demonstration amplifier with excellent second and third harmonic-suppression levels has been designed, constructed, and measured. The circuit fabricated using a 1.2-min gate-width GaAs MESFET is shown to be able to deliver 22-dBm output power at 2.3 GHz. The amplifier achieves a peak power-added efficiency of 64 % and drain efficiency of 69 %, and exhibits 11.6 dB power gain when operated from a 3-V supply voltage. Comparisons of simulated and measured results are given with good agreement between them being obtained. Experimental results are presented for the amplifier's response to Gaussian minimum shift keying modulation, where a peak error vector modulation value of 0.6% is measured.
Resumo:
The impact that the transmission-line load-network has on the performance of the recently introduced series-L/parallel-tuned Class-E amplifier and the classic shunt-C/series-tuned configuration when compared to optimally derived lumped load networks is discussed. In addition an improved load topology which facilitates harmonic suppression of up to 5 order as required for maximum Class-E efficiency as well as load resistance transformation and a design procedure involving the use of Kuroda's identity and Richard's transformation enable a distributed synthesis process which dispenses with the need for iterative tuning as previously required in order to achieve optimum Class-E operation. © 2005 IEEE.
Resumo:
1. We examine whether various measures of herbivore current physiological state (age, breeding and immune status) and genetic potential can be used as indicators of exposure to and risk from disease. We use dairy cattle and the risks of tuberculosis (TB) transmission posed to them by pasture contaminated with badger excreta (via the fecal-oral route) as a model system to address our aim.
Resumo:
This article compares and contrasts information
obtained, using transmission electron microscopy (TEM)
and piezo-force microscopy (PFM), on domain configurations
adopted in single crystal lamellae of BaTiO3, that had
been cut directly from bulk using a focused ion beam
microscope with top and bottom surfaces parallel to
{100}pseudocubic. Both forms of imaging reveal domain
walls parallel to {110}pseudocubic, consistent with sets of 90
domains with dipoles oriented parallel to the two
\001[pseudocubic directions in the plane of the lamellae.
However, the domain width was observed to be dramatically
larger using PFM than it was using TEM. This suggests
significant differences in the surface energy densities
that drive the domain formation in the first place, that could
relate to differences in the boundary conditions in the two
modes of imaging (TEM samples are imaged under high
vacuum, whereas PFM imaging was performed in air).
Attempts were made to map local dipole orientations
directly, using a form of ‘vector’ PFM. However, information
inferred was largely inconsistent with the known
crystallography of the samples, raising concern about the
levels of care needed for accurate interpretation of PFM
images.
Resumo:
An efficient modelling technique is proposed for the analysis of a fractal-element electromagnetic band-gap array. The modelling is based on a method of moments modal analysis in conjunction with an interpolation scheme, which significantly accelerates the computations. The plane-wave and the surface-wave responses of the structure have been studied by means of transmission coefficients and dispersion diagrams. The multiband properties and the compactness of the proposed structure are presented. The technique is general and can be applied to arbitrary-shaped element geometries.
Resumo:
We have used XUV lasers to make absolute measurements of the photoabsorption coefficient of Al at energies just below that of the L3 absorption edge at 72.7 eV. Transmission measurements at photon energies of 53.7 and 63.3 eV have been made using Ne-like Ni and Ge XUV lasers. The XUV laser output was recorded in first and second orders using a flat-field spectrometer. Al foils with steps of various thicknesses were placed over the first order diffracted signal, while the second order diffraction was used to monitor the beam profile at each position. The transmission data agree extremely well with the original measurements at these wavelengths made by Henke and co-workers (Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 18 1), but are in conflict with subsequent measurements which are currently in common use (Gullikson E M, Denham P, Mrowka S and Underwood J H 1994 Phys. Rev. B 49 16 283). The exact values of the absorption coefficients in this region of the spectrum have significant implications for the diagnosis of the energy and intensity output of XUV lasers.
Resumo:
A pin diode-loaded active doubly periodic flat strip FSS is shown to act as a dynamic screen. It is shown that by means of d.c. bias control, we can utilize the screen in, (1) transmission mode as a dual band electromagnetic shutter, or with the inclusion of a ground plane in reflection mode, (is (2) it dual band refection canceller. (3) an amplitude shift keying (ASK) spatial modulator. The properties of the FSS are characterized using a specially designed parallel plate waveguide simulator that permits normal incidence excitation of the FSS under test. (C) 2009 Wiley Periodicals. Inc. Microwave Opt Technol Lett 51: 2059-2061, 2009; Published online in Wiley Inter-Science (www. interscience.wiley.com). DOI 10.1002/mop.24547
Resumo:
Muscarinic acetylcholine receptors (mAChRs) provide viable targets for the treatment of multiple central nervous system disorders. We have used cheminformatics and medicinal chemistry to develop new, highly selective M4 allosteric potentiators. VU10010, the lead compound, potentiates the M4 response to acetylcholine 47-fold while having no activity at other mAChR subtypes. This compound binds to an allosteric site on the receptor and increases affinity for acetylcholine and coupling to G proteins. Whole-cell patch clamp recordings revealed that selective potentiation of M4 with VU10010 increases carbachol-induced depression of transmission at excitatory but not inhibitory synapses in the hippocampus. The effect was not mimicked by an inactive analog of VU10010 and was absent in M4 knockout mice. Selective regulation of excitatory transmission by M4 suggests that targeting of individual mAChR subtypes could be used to differentially regulate specific aspects of mAChR modulation of function in this important forebrain structure.