970 resultados para Tornado Damage Assessment
Resumo:
This paper presents an ongoing research project concerning the development of an automated safety assessment framework for earthmoving and surface mining activities. This research seeks to determine data needs for safety assessment and investigates how to utilize collected data to promote more informed and efficient safety decision-making. The research first examined accidents and fatalities involved with earthmoving and surface mining activities—more specifically, those involving loading, hauling, and dumping operations,—investigated risk factors involved with the accidents, and finally identified data needs for safety assessment based on safety regulations and practices. An automated safety assessment method was then developed using the data needs that had been identified. This research is expected to contribute to the introduction of a fundamental framework for automated safety assessment and the systematic collection of safety-related data from construction activities. Implementation of the entire safety assessment process on actual construction sites remains a task for future research.
Resumo:
Object identification and tracking have become critical for automated on-site construction safety assessment. The primary objective of this paper is to present the development of a testbed to analyze the impact of object identification and tracking errors caused by data collection devices and algorithms used for safety assessment. The testbed models workspaces for earthmoving operations and simulates safety-related violations, including speed limit violations, access violations to dangerous areas, and close proximity violations between heavy machinery. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of device and algorithm errors were investigated for safety planning purposes.
Resumo:
This chapter addresses the changing climate of assessment policy and practice in Australia in response to global trends in education and the mounting accountability demands of standards-driven reform. Queensland, a State of Australia, has a tradition of respecting and trusting teacher judgment through the practice of, and policy commitment to, externally moderated school-based assessment. This chapter outlines the global trends in curriculum and assessment reform, and then analyzes the impact of international comparisons on national policy. The creation of the Australian Curriculum, Assessment and Reporting Authority (ACARA) together with the intent of establishing a standards-referenced framework raises tensions and challenges for teachers’ practice. The argument for sustaining confidence in teacher-based assessment is developed with reference to research evidence pertaining to the use of more authentic assessments and moderation practices for the purposes of improving learning, equity and accountability. Evidence is drawn from local studies of teacher judgment practice and used to demonstrate these developments and in so doing illuminate the complex issues of engaging the demands of policy while sustaining confidence in teacher assessment.
Resumo:
We present a hierarchical model for assessing an object-oriented program's security. Security is quantified using structural properties of the program code to identify the ways in which `classified' data values may be transferred between objects. The model begins with a set of low-level security metrics based on traditional design characteristics of object-oriented classes, such as data encapsulation, cohesion and coupling. These metrics are then used to characterise higher-level properties concerning the overall readability and writability of classified data throughout the program. In turn, these metrics are then mapped to well-known security design principles such as `assigning the least privilege' and `reducing the size of the attack surface'. Finally, the entire program's security is summarised as a single security index value. These metrics allow different versions of the same program, or different programs intended to perform the same task, to be compared for their relative security at a number of different abstraction levels. The model is validated via an experiment involving five open source Java programs, using a static analysis tool we have developed to automatically extract the security metrics from compiled Java bytecode.
Resumo:
Traditionally, transport disadvantage has been identified using accessibility analysis although the effectiveness of the accessibility planning approach to improving access to goods and services is not known. This paper undertakes a comparative assessment of measures of mobility, accessibility, and participation used to identify transport disadvantage using the concept of activity spaces. A 7 day activity-travel diary data for 89 individuals was collected from two case study areas located in rural Northern Ireland. A spatial analysis was conducted to select the case study areas using criteria derived from the literature. The criteria are related to the levels of area accessibility and area mobility which are known to influence the nature of transport disadvantage. Using the activity-travel diary data individuals weekly as well as day to day variations in activity-travel patterns were visualised. A model was developed using the ArcGIS ModelBuilder tool and was run to derive scores related to individual levels of mobility, accessibility, and participation in activities from the geovisualisation. Using these scores a multiple regression analysis was conducted to identify patterns of transport disadvantage. This study found a positive association between mobility and accessibility, between mobility and participation, and between accessibility and participation in activities. However, area accessibility and area mobility were found to have little impact on individual mobility, accessibility, and participation in activities. Income vis-àvis ´ car-ownership was found to have a significant impact on individual levels of mobility, and accessibility; whereas participation in activities were found to be a function of individual levels of income and their occupational status.
Resumo:
The tear film plays an important role preserving the health of the ocular surface and maintaining the optimal refractive power of the cornea. Moreover dry eye syndrome is one of the most commonly reported eye health problems. This syndrome is caused by abnormalities in the properties of the tear film. Current clinical tools to assess the tear film properties have shown certain limitations. The traditional invasive methods for the assessment of tear film quality, which are used by most clinicians, have been criticized for the lack of reliability and/or repeatability. A range of non-invasive methods of tear assessment have been investigated, but also present limitations. Hence no “gold standard” test is currently available to assess the tear film integrity. Therefore, improving techniques for the assessment of the tear film quality is of clinical significance and the main motivation for the work described in this thesis. In this study the tear film surface quality (TFSQ) changes were investigated by means of high-speed videokeratoscopy (HSV). In this technique, a set of concentric rings formed in an illuminated cone or a bowl is projected on the anterior cornea and their reflection from the ocular surface imaged on a charge-coupled device (CCD). The reflection of the light is produced in the outer most layer of the cornea, the tear film. Hence, when the tear film is smooth the reflected image presents a well structure pattern. In contrast, when the tear film surface presents irregularities, the pattern also becomes irregular due to the light scatter and deviation of the reflected light. The videokeratoscope provides an estimate of the corneal topography associated with each Placido disk image. Topographical estimates, which have been used in the past to quantify tear film changes, may not always be suitable for the evaluation of all the dynamic phases of the tear film. However the Placido disk image itself, which contains the reflected pattern, may be more appropriate to assess the tear film dynamics. A set of novel routines have been purposely developed to quantify the changes of the reflected pattern and to extract a time series estimate of the TFSQ from the video recording. The routine extracts from each frame of the video recording a maximized area of analysis. In this area a metric of the TFSQ is calculated. Initially two metrics based on the Gabor filter and Gaussian gradient-based techniques, were used to quantify the consistency of the pattern’s local orientation as a metric of TFSQ. These metrics have helped to demonstrate the applicability of HSV to assess the tear film, and the influence of contact lens wear on TFSQ. The results suggest that the dynamic-area analysis method of HSV was able to distinguish and quantify the subtle, but systematic degradation of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions. Thus, the HSV method appears to be a useful technique for quantitatively investigating the effects of contact lens wear on the TFSQ. Subsequently a larger clinical study was conducted to perform a comparison between HSV and two other non-invasive techniques, lateral shearing interferometry (LSI) and dynamic wavefront sensing (DWS). Of these non-invasive techniques, the HSV appeared to be the most precise method for measuring TFSQ, by virtue of its lower coefficient of variation. While the LSI appears to be the most sensitive method for analyzing the tear build-up time (TBUT). The capability of each of the non-invasive methods to discriminate dry eye from normal subjects was also investigated. The receiver operating characteristic (ROC) curves were calculated to assess the ability of each method to predict dry eye syndrome. The LSI technique gave the best results under both natural blinking conditions and in suppressed blinking conditions, which was closely followed by HSV. The DWS did not perform as well as LSI or HSV. The main limitation of the HSV technique, which was identified during the former clinical study, was the lack of the sensitivity to quantify the build-up/formation phase of the tear film cycle. For that reason an extra metric based on image transformation and block processing was proposed. In this metric, the area of analysis was transformed from Cartesian to Polar coordinates, converting the concentric circles pattern into a quasi-straight lines image in which a block statistics value was extracted. This metric has shown better sensitivity under low pattern disturbance as well as has improved the performance of the ROC curves. Additionally a theoretical study, based on ray-tracing techniques and topographical models of the tear film, was proposed to fully comprehend the HSV measurement and the instrument’s potential limitations. Of special interested was the assessment of the instrument’s sensitivity under subtle topographic changes. The theoretical simulations have helped to provide some understanding on the tear film dynamics, for instance the model extracted for the build-up phase has helped to provide some insight into the dynamics during this initial phase. Finally some aspects of the mathematical modeling of TFSQ time series have been reported in this thesis. Over the years, different functions have been used to model the time series as well as to extract the key clinical parameters (i.e., timing). Unfortunately those techniques to model the tear film time series do not simultaneously consider the underlying physiological mechanism and the parameter extraction methods. A set of guidelines are proposed to meet both criteria. Special attention was given to a commonly used fit, the polynomial function, and considerations to select the appropriate model order to ensure the true derivative of the signal is accurately represented. The work described in this thesis has shown the potential of using high-speed videokeratoscopy to assess tear film surface quality. A set of novel image and signal processing techniques have been proposed to quantify different aspects of the tear film assessment, analysis and modeling. The dynamic-area HSV has shown good performance in a broad range of conditions (i.e., contact lens, normal and dry eye subjects). As a result, this technique could be a useful clinical tool to assess tear film surface quality in the future.
Resumo:
This paper describes effective ways secondary school leaders can enact curriculum policy, particularly assessment practices, to support learning for students with disabilities in mainstream schools. Assessment for learning (AfL) as a pedagogic practice, has gained recent importance through inclusion in curriculum policy in Queensland, Australia. AfL is the frequent assessment of student progress that identifies learning needs and informs future teaching and learning. Assessment of student progress of the standards based curriculum has provided challenges for schools attempting to meet the needs of “all” learners. This paper highlights findings of a small case study to model successful leadership practices used in an inclusive secondary school to improve achievement of students with disabilities through assessment. Successful leadership practices that can be generalized to improve achievement of all learners include making sense of policy for staff; developing staff common and shared beliefs and actions; organizing professional learning opportunities and arranging collaborative curriculum planning and co-teaching.
Resumo:
This report presents the findings of an exploratory study into the perceptions held by students regarding the use of criterion-referenced assessment in an undergraduate differential equations class. Students in the class were largely unaware of the concept of criterion referencing and of the various interpretations that this concept has among mathematics educators. Our primary goal was to investigate whether explicitly presenting assessment criteria to students was useful to them and guided them in responding to assessment tasks. Quantitative data and qualitative feedback from students indicates that while students found the criteria easy to understand and useful in informing them as to how they would be graded, the manner in which they actually approached the assessment activity was not altered as a result of the use of explicitly communicated grading criteria.
Resumo:
Despite a lack of consistent empirical evidence, there has been an ongoing assumption that intellectual disability is associated with reduced levels of motivation. The participants in this study were 33 children with Down syndrome ages 10–15 years and 33 typically developing 3–8-year-old children. Motivation was measured through observational assessments of curiosity, preference for challenge, and persistence, as well as maternal reports. There were no significant group differences on motivation tasks, but mothers of children with Down syndrome rated their children significantly lower on motivation than did parents of typically developing children. There were some intriguing group differences in the pattern of correlations among observations and parent reports. The findings challenge long-held views that individuals with intellectual disability are invariably deficient in motivation.
Resumo:
This paper presents an automated image‐based safety assessment method for earthmoving and surface mining activities. The literature review revealed the possible causes of accidents on earthmoving operations, investigated the spatial risk factors of these types of accident, and identified spatial data needs for automated safety assessment based on current safety regulations. Image‐based data collection devices and algorithms for safety assessment were then evaluated. Analysis methods and rules for monitoring safety violations were also discussed. The experimental results showed that the safety assessment method collected spatial data using stereo vision cameras, applied object identification and tracking algorithms, and finally utilized identified and tracked object information for safety decision making.
Resumo:
Regardless of technology benefits, safety planners still face difficulties explaining errors related to the use of different technologies and evaluating how the errors impact the performance of safety decision making. This paper presents a preliminary error impact analysis testbed to model object identification and tracking errors caused by image-based devices and algorithms and to analyze the impact of the errors for spatial safety assessment of earthmoving and surface mining activities. More specifically, this research designed a testbed to model workspaces for earthmoving operations, to simulate safety-related violations, and to apply different object identification and tracking errors on the data collected and processed for spatial safety assessment. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of the errors were investigated for the safety planning purpose.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. AE is one of the several non-destructive testing (NDT) techniques currently used for structural health monitoring (SHM) of civil, mechanical and aerospace structures. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. Despite these advantages, several challenges still exist in successful application of AE monitoring. Accurate localization of AE sources, discrimination between genuine AE sources and spurious noise sources and damage quantification for severity assessment are some of the important issues in AE testing and will be discussed in this paper. Various data analysis and processing approaches will be applied to manage those issues.
Resumo:
This paper presents an explanation of why the reuse of building components after demolition or deconstruction is critical to the future of the construction industry. An examination of the historical cause and response to climate change sets the scene as to why governance is becoming increasingly focused on the built environment as a mechanism to controlling waste generation associated with the process of demolition, construction and operation. Through an annotated description to the evolving design and construction methodology of a range of timber dwellings (typically 'Queenslanders' during the eras of 1880-1900, 1900-1920 & 1920-1940) the paper offers an evaluation to the variety of materials, which can be used advantageously by those wishing to 'regenerate' a Queenslander. This analysis of 'regeneration' details the constraints when considering relocation and/ or reuse by adaption including deconstruction of building components against the legislative framework requirements of the Queensland Building Act 1975 and the Queensland Sustainable Planning Act 2009, with a specific examination to those of the Building Codes of Australia. The paper concludes with a discussion of these constraints, their impacts on 'regeneration' and the need for further research to seek greater understanding of the practicalities and drivers of relocation, adaptive and building components suitability for reuse after deconstruction.
Resumo:
Australian construction and building workers are exposed to serious workplace risks - including injury, illness and death - and although there have been improvements in occupational health and safety (OHS) performance over the past 20 years, the injury and fatality rate in the Australian construction industry remains a matter of concern. The concept of safety culture is rapidly being adopted in the industry, including recognising the critical role that organisational leaders play in overall safety performance. This paper reviews recent research in construction safety leadership and provides some examples and applications relevant to risk reduction in the workforce. By focusing on developing safety competency in those that fulfil safety critical roles, and clearly articulating the relevant safety management tasks, leaders can positively influence the organisation’s safety culture. Finally, some promising research on Safety Effectiveness Indicators (SEIs) may be an industry-friendly solution to reducing workplace risks across the industry, by providing a credible, accurate, and timely measure of safety performance.