949 resultados para Tight junction
Resumo:
Recent models of language comprehension have assumed a tight coupling between the semantic representations of action words and cortical motor areas. We combined functional MRI with cytoarchitectonically defined probabilistic maps of left hemisphere primary and premotor cortices to analyse responses of functionally delineated execution- and observation-related regions during comprehension of action word meanings associated with specific effectors (e.g., punch, bite or stomp) and processing of items with various levels of lexical information (non body part-related meanings, nonwords, and visual character strings). The comprehension of effector specific action word meanings did not elicit preferential activity corresponding to the somatotopic organisation of effectors in either primary or premotor cortex. However, generic action word meanings did show increased BOLD signal responses compared to all other classes of lexical stimuli in the pre-SMA. As expected, the majority of the BOLD responses elicited by the lexical stimuli were in association cortex adjacent to the motor areas. We contrast our results with those of previous studies reporting significant effects for only 1 or 2 effectors outside cytoarchitectonically defined motor regions and discuss the importance of controlling for potentially confounding lexical variables such as imageability. We conclude that there is no strong evidence for a somatotopic organisation of action word meaning representations and argue the pre-SMA might have a role in maintaining abstract representations of action words as instructional cues.
Resumo:
Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.
Resumo:
Tight networks of interwoven carbon nanotube bundles are formed in our highly conductive composite. The composite possesses propertiessuggesting a two-dimensional percolative network rather than other reported dispersions displaying three-dimensional networks. Binding nanotubes into large but tight bundles dramatically alters the morphology and electronic transport dynamics of the composite. This enables itto carry higher levels of charge in the macroscale leading to conductivities as high as 1600 S/cm. We now discuss in further detail, the electronic and physical properties of the nanotube composites through Raman spectroscopy and transmission electron microscopy analysis. When controlled and usedappropriately, the interesting properties of these composites reveal their potential for practical device applications. For instance, we used this composite to fabricate coatings, whic improve the properties of an electromagnetic antenna/amplifier transducer. The resulting transducer possesses a broadband range up to GHz frequencies. A strain gauge transducer was also fabricated using changes in conductivity to monitor structural deformations in the composite coatings.
Resumo:
Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm2, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.
Resumo:
This chapter extends the phenomenographical research method by arguing the merits of engineering the outcome space from these investigations to effectively communicate the outcomes to an audience in technology-based discipline areas. Variations discovered from the phenomenographical study are blended with pre and post tests and a frequency distribution. Outcomes are then represented in a visual statistical manner to suit the specific target audience. This chapter provides useful insights that will be of interest to researchers wishing to present findings from qualitative research methods, and particularly the outcomes of phenomenographic investigations, to an audience in technology-based discipline areas.
Resumo:
Legal translation theory brooks little interference with the source legal text. With few exceptions (Joseph 2005; Hammel 2008; Harvey 2002; Kahaner 2005; Kasirer 2001; Lawson 2006), lawyers and linguists tend to tether themselves to the pole of literalism. More a tight elastic band than an unyielding rope, this tether constrains — rather than prohibits — liberal legal translations. It can stretch to accommodate a degree of freedom by the legal translator however, should it go too far, it snaps back to the default position of linguistic fidelity. This ‘stretch and snap’ gives legal translation a unique place in general translation theory. In the general debate over the ‘degree of freedom’ the translator enjoys in conveying the meaning of the text, legal translation theory has reached its own settlement. Passivity is the default; creativity, the ‘qualified’ exception (Hammel 2008: 275).
Resumo:
Multiple sclerosis (MS) is an autoimmune disease with a genetic component, caused at least in part by aberrant lymphocyte activity. The whole blood mRNA transcriptome was measured for 99 untreated MS patients: 43 primary progressive MS, 20 secondary progressive MS, 36 relapsing remitting MS and 45 age-matched healthy controls. The ANZgene Multiple Sclerosis Genetics Consortium genotyped more than 300 000 SNPs for 115 of these samples. Transcription from genes on translational regulation, oxidative phosphorylation, immune synapse and antigen presentation pathways was markedly increased in all forms of MS. Expression of genes tagging T cells was also upregulated (P < 10-12) in MS. A T cell gene signature predicts disease state with a concordance index of 0.79 with age and gender as co-variables, but the signature is not associated with clinical course or disability. The ANZgene genome wide association screen identified two novel regions with genome wide significance: one encoding the T cell co-stimulatory molecule, CD40; the other a region on chromosome 12q13-14. The CD40 haplotype associated with increased MS susceptibility has decreased gene expression in MS (P < 0.0007). The second MS susceptibility region includes 17 genes on 12q13-14 in tight linkage disequilibrium. Of these, only 13 are expressed in leukocytes, and of these the expression of one, FAM119B, is much lower in the susceptibility haplotype (P tdthomlt; 10-14). Overall, these data indicate dysregulation of T cells can be detected in the whole blood of untreated MS patients, and supports targeting of activated T cells in therapy for all forms of MS.
Resumo:
This paper explores the changing employment expectations that frame the early professional work experiences of young planners in Australia. In particular, it considers the rising popularity of pre-graduation professional work experience as a precursor to formal entry into the workforce as a practising planner. This shift is being driven in part by employer expectations that graduates will already have ‘real world’ and relevant work experience. However, an equally significant driver appears to be a growing desire for early career and graduate planners to find ways to distinguish themselves from their peers in an increasingly tight labour market. Using data from an ongoing research project into the formative work experiences of young people this paper describes the three main types of pre-graduation professional work experience undertaken by young planners. It highlights the potential challenges and benefits of pre-graduation work experience from a legal, social and ethical perspective as well as from the perspective of young planners themselves. The paper concludes by reflecting on the role of the planning profession – employers, peak bodies and planning educators – in managing the tensions between producing ‘work ready’ graduates and safeguarding the employment conditions of early career planning professionals.
Resumo:
The diphenoxy bicyclic tetraphosphapentazane derivatives (EtN)(5)P-4(OPh)(2) 2 and its monoxide (EtN)(5)P-4(O)(OPh)(2) 3 have been prepared. Both 2 and 3 exist as a mixture of two isomers. One isomer of (EtN)(5)P-4(O)(OPh)(2) 3a has been isolated and its reaction with tetrachloro-1,2-benzoquinone yielded (EtN)(5)P-4(O)(OPh)(2)(O2C6Cl4) 5 in which the junction phosphorus atom becomes five-co-ordinated. Treatment of 2 or 3a with [Mo(CO)(4)(nbd)] (nbd = norbornadiene, bicyclo[2.2.1]hepta-2,5-diene), on the other hand, yielded the chelate complex [Mo(CO)(4){(EtN)(5)P-4(O)(n)(OPh)(2)}] (n = 0 or 1; 6 or 7) in which the peripheral phosphorus atoms are bonded to the metal. The structures of 3a and 5-7 have been confirmed by single-crystal X-ray diffraction studies. The two P3N3 rings in 3a and 5 adopt twist/twist and irregular/twist conformations respectively; the phenoxy substituents occupy the 'pseudo axial' positions. However, an ideal chair conformation is observed for the P3N3 rings in 6 and 7 with the phenoxy substituents taking up the 'pseudo equatorial' positions. The NMR spectroscopic data for the compounds are discussed.
Resumo:
Conductance measurements of junctions between a high- superconductor and a metallic oxide have been carried out along the a-b plane to examine the tunnel-junction spectra. For these measurements, in situ films have been grown on c-axis oriented thin films using the pulsed laser deposition technique. Two distinctive energy gaps have been observed along with conductance peaks around zero bias. The analysis of zero-bias conductance and energy gap data suggests the presence of midgap states located at the centre of a finite energy gap. The results obtained are also in accordance with the d-wave nature of high- superconductors.
Resumo:
Possible integration of Single Electron Transistor (SET) with CMOS technology is making the study of semiconductor SET more important than the metallic SET and consequently, the study of energy quantization effects on semiconductor SET devices and circuits is gaining significance. In this paper, for the first time, the effects of energy quantization on SET inverter performance are examined through analytical modeling and Monte Carlo simulations. It is observed that the primary effect of energy quantization is to change the Coulomb Blockade region and drain current of SET devices and as a result affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. It is shown that SET inverter designed with CT : CG = 1/3 (where CT and CG are tunnel junction and gate capacitances respectively) offers maximum robustness against energy quantization.
Resumo:
An axis-parallel b-dimensional box is a Cartesian product R-1 x R-2 x ... x R-b where each R-i (for 1 <= i <= b) is a closed interval of the form [a(i), b(i)] on the real line. The boxicity of any graph G, box(G) is the minimum positive integer b such that G can be represented as the intersection graph of axis-parallel b-dimensional boxes. A b-dimensional cube is a Cartesian product R-1 x R-2 x ... x R-b, where each R-i (for 1 <= i <= b) is a closed interval of the form [a(i), a(i) + 1] on the real line. When the boxes are restricted to be axis-parallel cubes in b-dimension, the minimum dimension b required to represent the graph is called the cubicity of the graph (denoted by cub(G)). In this paper we prove that cub(G) <= inverted right perpendicularlog(2) ninverted left perpendicular box(G), where n is the number of vertices in the graph. We also show that this upper bound is tight.Some immediate consequences of the above result are listed below: 1. Planar graphs have cubicity at most 3inverted right perpendicularlog(2) ninvereted left perpendicular.2. Outer planar graphs have cubicity at most 2inverted right perpendicularlog(2) ninverted left perpendicular.3. Any graph of treewidth tw has cubicity at most (tw + 2) inverted right perpendicularlog(2) ninverted left perpendicular. Thus, chordal graphs have cubicity at most (omega + 1) inverted right erpendicularlog(2) ninverted left perpendicular and circular arc graphs have cubicity at most (2 omega + 1)inverted right perpendicularlog(2) ninverted left perpendicular, where omega is the clique number.
Resumo:
Modern drug discovery gives rise to a great number of potential new therapeutic agents, but in some cases the efficient treatment of patient may not be achieved because the delivery of active compounds to the target site is insufficient. Thus, drug delivery is one of the major challenges in current pharmaceutical research. Numerous nanoparticle-based drug carriers, e.g. liposomes, have been developed for enhanced drug delivery and targeting. Drug targeting may enhance the efficiency of the treatment and, importantly, reduce unwanted side effects by decreasing drug distribution to non-target tissues. Liposomes are biocompatible lipid-based carriers that have been studied for drug delivery during the last 40 years. They can be functionalized with targeting ligands and sensing materials for triggered activation. In this study, various external signal-assisted liposomal delivery systems were developed. Signals can be used to modulate drug permeation or release from the liposome formulation, and they provide accurate control of time, place and rate of activation. The study involved three types of signals that were used to trigger drug permeation and release: electricity, heat and light. Electrical stimulus was utilized to enhance the permeation of liposomal DNA across the skin. Liposome/DNA complex-mediated transfections were performed in tight rat epidermal cell model. Various transfection media and current intensities were tested, and transfection efficiency was evaluated non-invasively by monitoring the concentration of secreted reporter protein in cell culture medium. Liposome/DNA complexes produced gene expression, but electrical stimulus did not enhance the transfection efficiency significantly. Heat-sensitive liposomal drug delivery system was developed by coating liposomes with biodegradable and thermosensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate polymer. Temperature-triggered liposome aggregation and contents release from liposomes were evaluated. The cloud point temperature (CP) of the polymer was set to 42 °C. Polymer-coated liposome aggregation and contents release were observed above CP of the polymer, while non-coated liposomes remained intact. Polymer precipitates above its CP and interacts with liposomal bilayers. It is likely that this induces permeabilization of the liposomal membrane and contents release. Light-sensitivity was introduced to liposomes by incorporation of small (< 5 nm) gold nanoparticles. Hydrophobic and hydrophilic gold nanoparticles were embedded in thermosensitive liposomes, and contents release was investigated upon UV light exposure. UV light-induced lipid phase transitions were examined with small angle X-ray scattering, and light-triggered contents release was shown also in human retinal pigment epithelial cell line. Gold nanoparticles absorb light energy and transfer it into heat, which induces phase transitions in liposomes and triggers the contents release. In conclusion, external signal-activated liposomes offer an advanced platform for numerous applications in drug delivery, particularly in the localized drug delivery. Drug release may be localized to the target site with triggering stimulus that results in better therapeutic response and less adverse effects. Triggering signal and mechanism of activation can be selected according to a specific application.
Resumo:
A k-dimensional box is the cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G,denoted as box(G), is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the cartesian product R-1 x R-2 x ... x R-k where each Ri is a closed interval on the real line of the form [a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. In this paper we show that cub(G) <= t + inverted right perpendicularlog(n - t)inverted left perpendicular - 1 and box(G) <= left perpendiculart/2right perpendicular + 1, where t is the cardinality of a minimum vertex cover of G and n is the number of vertices of G. We also show the tightness of these upper bounds. F.S. Roberts in his pioneering paper on boxicity and cubicity had shown that for a graph G, box(G) <= left perpendicularn/2right perpendicular and cub(G) <= inverted right perpendicular2n/3inverted left perpendicular, where n is the number of vertices of G, and these bounds are tight. We show that if G is a bipartite graph then box(G) <= inverted right perpendicularn/4inverted left perpendicular and this bound is tight. We also show that if G is a bipartite graph then cub(G) <= n/2 + inverted right perpendicularlog n inverted left perpendicular - 1. We point out that there exist graphs of very high boxicity but with very low chromatic number. For example there exist bipartite (i.e., 2 colorable) graphs with boxicity equal to n/4. Interestingly, if boxicity is very close to n/2, then chromatic number also has to be very high. In particular, we show that if box(G) = n/2 - s, s >= 0, then chi (G) >= n/2s+2, where chi (G) is the chromatic number of G.
Resumo:
This paper describes a new analysis of the avalanche breakdown phenomenon in bipolar transistors for different bias conditions of the emitter-base junction. This analysis revolves around the transportation and storage of majority carriers in the base region. Using this analysis one can compute all the voltage-current characteristics of a transistor under avalanche breakdown.