965 resultados para Thermohidraulic circuit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyzing, optimizing and designing flotation circuits using models and simulators have improved significantly over the last 15 years. Mineral flotation is now generally better understood through major advances in measuring and modeling the sub-processes within the flotation system. In addition, new and better methods have been derived to represent the floatability of particles as they move around a flotation circuit. A simulator has been developed that combines the effects of all of these sub-processes to predict the metallurgical performance of a flotation circuit. This paper presents an overview of the simulator, JKSimFloat V6.1PLUS, and its use in improving the industrial flotation plant performance. The application of the simulator at various operations is discussed with particular emphasis on the use of JKSimFloat V6.1PLUS in improving the flotation circuit performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods of analysing and optimising flotation circuits have improved significantly over the last 15 years. Mineral flotation is now generally better understood through major advances in measuring and modelling the sub-processes within the flotation system. JKSimFloat V6 is a user-friendly Windows-based software package incorporating simulation, mass balancing, and, currently under development, liberation data viewing and model fitting. This paper presents an overview of the development of the program up to its current status, and the plans established for the future. The application of the simulator, in particular, at various operations is also discussed with emphasis on the use of the program in improving flotation circuit performance.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residual current-operated circuit-breakers (RCCBs) have proved useful devices for the protection of both human beings against ventricular fibrillation and installations against fire. Although they work well with sinusoidal waveforms, there is little published information on their characteristics. Due to shunt connected non-linear devices, not the least of which is the use of power electronic equipment, the supply is distorted. Consequently, RCCBs as well as other protection relays are subject to non-sinusoidal current waveforms. Recent studies showed that RCCBs are greatly affected by harmonics, however the reasons for this are not clear. A literature search has also shown that there are inconsistencies in the analysis of the effect of harmonics on protection relays. In this work, the way RCCBs operate is examined, then a model is built with the aim of assessing the effect of non-sinusoidal current on RCCBs. Tests are then carried out on a number of RCCBs and these, when compared with the results from the model showed good correlation. In addition, the model also enables us to explain the RCCBs characteristics for pure sinusoidal current. In the model developed, various parameters are evaluated but special attention is paid to the instantaneous value of the current and the tripping mechanism movement. A similar assessment method is then used to assess the effect of harmonics on two types of protection relay, the electromechanical instantaneous relay and time overcurrent relay. A model is built for each of them which is then simulated on the computer. Tests results compare well with the simulation results, and thus the model developed can be used to explain the relays behaviour in a harmonics environment. The author's models, analysis and tests show that RCCBs and protection relays are affected by harmonics in a way determined by the waveform and the relay constants. The method developed provides a useful tool and the basic methodology to analyse the behaviour of RCCBs and protection relays in a harmonics environment. These results have many implications, especially the way RCCBs and relays should be tested if harmonics are taken into account.