972 resultados para Thermodynamics
Resumo:
By using the Monte Carlo simulation platform with probabilistic mathematical functions of the Boltzmann type, , having activation energy and temperature as parameters, it was possible to assess important dynamic aspects of homogeneous chemical reactions of the types A → B and A
B. The protocol proved a useful tool in work with the basic concepts of Kinetics and Thermodynamics allowing its application both in class activities and for assisting experimental procedures.
Resumo:
A study evaluating Brazilian chemical researchers understanding of the scope of the terms Environmental Sustainability and Sustainable Development, and their assessment of how to deal with environmental fragility and limits, is reported. Results showed a certain degree of acknowledgement of the need for a more sustainable development, but little agreement on the magnitude of the environmental limits. The researchers recognized the limitations of the classical paradigms "of dilution" and "of risk", but showed no agreement on the requirements of the new "ecological paradigm" based on Environmental Sustainability and the 12 principles of Green Chemistry, important to assess the role of Green Chemistry for Sustainability.
Resumo:
The nutritional and functional benefits offered by whey protein α-lactalbumin justify the great interest in its manufacture in large quantities at a high purity level. Hydroxyapatite is a calcium phosphate material able to adsorb proteins and can be synthesized at low production cost. Therefore, this work evaluated the adsorption of α-lactalbumin on hydroxyapatite using solid-liquid phase equilibrium data reported as adsorption isotherms. Van't Hoff's thermodynamics analysis showed that the adsorption process is entropically driven.
Resumo:
Fun methodologies developed with alternative materials for teaching chemical reactions of carbon are interesting activities for discussing concepts of stoichiometry and thermochemistry. The decomposition of organic matter, CO2 production and coal formation can be demonstrated in the experiment "Pharaoh´s snake". This experiment is attractive since the simple combustion of sucrose generates a peculiar structure of coal. This paper proposes a simple methodology for making the sugar tablets used in the experiment and contextualizes the experimental observations with the chemical reaction of carbon which leads to coal and to the thermodynamics involving combustion processes.
Resumo:
An interesting practical experiment about the preparation of dye–sensitized solar cells (DSSC) using natural dyes were carried out by the undergraduate students in the chemistry course at UNICAMP . Natural dyes were extracted from blueberries (Vaccinium myrtillus L.), jabuticabas (Myrciaria cauliflora), raw and cooked beets (Beta vulgaris L.), and annattos (Bixa orellana L.), which were used to sensitize TiO2 films that composed the photoanode in the DSSC. A polymer electrolyte containing an iodide/triiodide redox couple was used in lieu of the use of liquid solutions to prevent any leakage in the devices. A maximum solar-to-electric energy conversion of 0.26 ± 0.02% was obtained for the solar cell prepared with annatto extracts. This experiment was an effective way to illustrate to the undergraduate students how to apply some of the chemical concepts that they learned during their chemistry course to produce electric energy from a clean and renewable energy source. Teachers could also exploit the basics of the electronic transitions in inorganic and organic compounds (e.g., metal-to-ligand charge transfer and ϖ-ϖ* transitions), thermodynamics (e.g., Gibbs free energy), acid–base reactions in the oxide solid surface and electrolyte, and band theory (i.e., the importance of the Fermi level energy).
Resumo:
We explore a DNA statistical model to obtain information about the behavior of the thermodynamics quantities. Special attention is given to the thermal denaturation of this macromolecule.
Resumo:
Stability constant (log beta) and thermodynamic parameters of Cd2+ complexes with sulfonamide and cephapirin were determined by Polarographic technique at pH = 7.30 ± 0.01 and µ = 1.0 M KNO3 at 250°C. The sulfonamides were sulfadiazine, sulfisoxazole, sulfamethaxazole, sulfamethazine, sulfathiazole, sulfacetamide and sulfanilamide used as primary ligands and cephapirin as secondary ligand. Cd2+ formed 1:1:1, 1:2:1 and 1:1:2 complexes. The nature of electrode processes were reversible and diffusion controlled. The stability constants and thermodynamic parameters (deltaG, deltaH and deltaS) were determined. The formation of the metal complexes has been found to be spontaneous, exothermic in nature, and entropically unfavourable at higher temperature.
Resumo:
Based on published thermodynamic quantities for solution, partitioning and sublimation of acetanilide (ACN), acetaminophen (ACP) and Phenacetin (PNC), the thermodynamic quantities for drugs solvation in octanol-saturated water (W(ROH)) and water-saturated octanol (ROH(W)) as well as the drugs dilution in ROH(W) were calculated. The Gibbs energies of solvation were favourable in all cases. The respective enthalpies and entropies were negative indicating an enthalpy-driving for the solvation process in all cases. On the other hand, the Gibbs energies of dilution were favourable for ACP and PNC but unfavourable for ACN, whereas the respective enthalpies and entropies were negative for ACP and PNC but positive for ACN indicating enthalpy-driving for the dilution process in the case of the former drugs and entropy-driving for the latter. From the obtained values for the transfer processes, an interpretation based on solute-solvent interactions was developed.
Resumo:
There are reasons of necessity in bio-fuel use and bio-energy fast development. It includes the material about bio-energy technologies, applications and methods. There are basic thermodynamics and economic theories. The economic calculation presents the comparison between two combinations. There are boiler plant below 20 MW in combination with ablative pyrolysis plant for bio-oil production and CHP plant below 100 MW in combination with the RTP pyrolysis bio-oil production technology. It provides a material about wood chips and bio-oil characteristics and explains it nature, presents the situation around the bio-fuel market or bio-fuel trade. There is a description of pyrolysis technologies such as ablative and RTP. The liquid product of the pyrolysis processes is bio-oil. The bio-oil could be different even of the same production process, because of the raw material nature and characteristics. The calculation shows advantages and weaknesses of combinations and obtained a proof of suppositions. The next thing, proven by this work is the fact that to get more efficiency from energy project it is good possibility to built plants in combinations.
Resumo:
This Bachelor’s thesis investigates the different types of jet engines used nowadays, their performance and applications. The thesis includes a general study of dynamics of fly, engine thermodynamics and contamination.
Resumo:
The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.
Resumo:
An electric system based on renewable energy faces challenges concerning the storage and utilization of energy due to the intermittent and seasonal nature of renewable energy sources. Wind and solar photovoltaic power productions are variable and difficult to predict, and thus electricity storage will be needed in the case of basic power production. Hydrogen’s energetic potential lies in its ability and versatility to store chemical energy, to serve as an energy carrier and as feedstock for various industries. Hydrogen is also used e.g. in the production of biofuels. The amount of energy produced during hydrogen combustion is higher than any other fuel’s on a mass basis with a higher-heating-value of 39.4 kWh/kg. However, even though hydrogen is the most abundant element in the universe, on Earth most hydrogen exists in molecular forms such as water. Therefore, hydrogen must be produced and there are various methods to do so. Today, the majority hydrogen comes from fossil fuels, mainly from steam methane reforming, and only about 4 % of global hydrogen comes from water electrolysis. Combination of electrolytic production of hydrogen from water and supply of renewable energy is attracting more interest due to the sustainability and the increased flexibility of the resulting energy system. The preferred option for intermittent hydrogen storage is pressurization in tanks since at ambient conditions the volumetric energy density of hydrogen is low, and pressurized tanks are efficient and affordable when the cycling rate is high. Pressurized hydrogen enables energy storage in larger capacities compared to battery technologies and additionally the energy can be stored for longer periods of time, on a time scale of months. In this thesis, the thermodynamics and electrochemistry associated with water electrolysis are described. The main water electrolysis technologies are presented with state-of-the-art specifications. Finally, a Power-to-Hydrogen infrastructure design for Lappeenranta University of Technology is presented. Laboratory setup for water electrolysis is specified and factors affecting its commissioning in Finland are presented.
Resumo:
The moisture adsorption characteristics of dried ginger slices was studied to determine the effect of storage conditions on moisture adsorption for the purpose of shelf life prediction, selection of appropriate packaging materials, evaluate the goodness-of-fit of sorption models, and determine the thermodynamics of moisture adsorption for application in drying. There was a highly significant effect (p < 0.05) of water activity (a w), temperature, and pre-treatment on the equilibrium moisture content (EMC) of the dried ginger slices. At constant a w, the EMC decreased as temperature increased. The EMC of all samples increased as the a w increased at constant temperature. The sorbed moisture of the unpeeled ginger slices was higher than the peeled while those of unblanched samples were higher than the blanched. Henderson equation allows more accurate predictions about the isotherms with the lowest %RMS, and therefore, it describes best the adsorption data followed by GAB, Oswin, and Halsey models in that order. The monolayer moisture generally decreased with temperature for all samples. The isosteric heat decreased with moisture content approaching the asymptotic value or the latent heat of vaporization of pure water (∆Hst = 0) while the entropy of sorption was observed to increase with moisture content.
Resumo:
Työn teoreettisessa osuudessa tehdään katsaus kiertoleijupetiteknologian eri osa-alueisiin: leijupedin virtausdynamiikkaan, hiukkaserottimeen ja kiintoaineen palautusmekanismiin. Myös teknologian historiaa ja muita käyttötarkoituksia energiantuotannon ohella käydään läpi. Termodynamiikkaa sekä lämmönsiirron ja voimalaitosprosessien teoriaa käsitellään mallinnuksessa tarvittavilta osin. Mallinnusosiossa käydään läpi kiertoleijupetihöyrykattilan matemaattisen mallin tekoprosessia. Malli perustuu yleisesti saatavilla oleviin yhtälöihin ja korrelaatioihin. Mallintaminen koostuu höyrykattilan jakamisesta lämpöpintoihin ja niiden mitoittamisesta. Mallissa esitetään myös näkemys siitä, miten lämpö siirtyy savukaasuun ja miten petimateriaalin kierto tapahtuu tulipesässä.
Resumo:
There is a growing trend towards decentralized electricity and heat production throughout the world. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and any improvement in their electrical efficiency has a significant impact from the environmental and economic viewpoints. This paper introduces an inter-cooled and recuperated two-shaft microturbine at 500 kW electric output range. The microturbine is optimized for a realistic combination of the turbine inlet temperature, the recuperation rate and the pressure ratio. The new microturbine design aims to achieve significantly increased performance within the range of microturbines and even competing with the efficiencies achieved in large industrial gas turbines. The simulated electrical efficiency is 45%. Improving the efficiency of combined heat and power (CHP) systems will significantly decrease the emissions and operating costs of decentralized heat and electricity production. Cost-effective, compact and environmentally friendly micro-and small-scale CHP turbine systems with high electrical efficiency will have an opportunity to successfully compete against reciprocating engines, which today are used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, capable of competing with reciprocating engine in terms of electrical efficiency.