958 resultados para THERAPY-INDUCED APOPTOSIS
Resumo:
This thesis focuses on biological activity of pyrrole-imidazole polyamides in vivo. The work presented includes experiments underlining sequence selectivity of these compounds in living cells and potential methods to improve it. A large fraction of this thesis is devoted to activity of Py-Im in murine models of cancer. We investigated the pharmacokinetics and biodistribution of two compounds – targeted to 5'-WGGWCW-3' and 5'-WTWCGW-3' sequences – and characterized their activity by measuring their effects on tumor growth, gene expression in vivo and in tissue culture, and their effects on physiology of tumors. The initial theoretical studies suggested that a large fraction of genomic sites are bound by Py-Im polyamides non-specifically and experimental data shows that the programmed binding sequence is not a sole determinant of the patterns of gene regulation. Despite the likely presence of non-specific effects of Py-Im polyamides in living cells, in vivo administration of Py-Im polyamides resulted in tolerable host toxicity and anti-tumor activity. Py-Im polyamide targeted to Estrogen Receptor Response Element showed downregulation of ER-driven gene expression in tumor cells, while the compound targeted to hypoxia response element reduced vascularization of tumors and their growth rate, induced apoptosis of cells in hypoxic areas and reduced expression of proangiogenic and prometastatic factors. Further studies, showed that polyamides distributed to many of the tested tissues and their FITC-conjugates showed nuclear uptake. The gene expression effects were also present in murine tissues, such as liver and kidneys, indicating a potential for use for Py-Im polyamides in non-cancerous diseases.
Resumo:
TET2 is a tumor suppressor gene that has been implicated in the epigenetic regulation of gene expression. Inactivating TET2 mutations are common in MDS. These mutations may contribute to early clonal dominance and myeloid transformation, although the exact mechanisms remain to be elucidated. Common to the environment of MDS are elevations in cytokines, such as TNFα and IFN-γ. It was hypothesized that inflammatory cytokines TNF-α and IFN-γ may promote clonal expansion of TET2 mutant progenitors. Adult (10-14 weeks-old) Tet2 wild type (+/+) and Tet2 mutant (-/-) C57BL/6 mice strains were chosen as a model system. Lineage negative cells (Lin-), enriched for hematopoietic stem and progenitor cells, were isolated from Tet2 +/+ and -/- bone marrow and cultured in the absence or presence of varying concentrations of TNFα or IFN-γ in methylcellulose colony formation assays and long term cell culture assays, over a period of 12 and 30 days respectively, and their colony growth, cell count, immunophenotype and resistance to apoptosis were examined. Where indicated, serial re-plating was performed. Expression of apoptotic regulators was assessed by qRT-PCR. In the triplicate experiments, starting with equal densities of Tet2 +/+ and -/- Lin- cells, Tet2 -/- Lin- cells displayed increased resistance to cytokine-induced growth suppression and superior colony forming ability over +/+ in the serial re-plating assays under stress of increasing TNFα or IFN γ. Tet2 -/- progenitors also displayed a lower apoptotic index compared to +/+ under stress of increasing TNFα, suggesting increased resistance to TNFα induced apoptosis. Transcriptional data showed low expression of Tnfr1, Fas and caspase 8, as well as a high expression of Bcl-2 and Iap1 in Tet2 -/- compared to +/+ under stress of TNFα. Tet2-/- also showed increased basal expression of endogenous TNFα mRNA compared to +/+. In the human colony growth assay, the clonal growth of TET2 mutant CFU-GM progenitors was enhanced at low TNFα concentrations. Conclusion: Mutations that promote resistance to environmental stem cell stressors are a known mechanism of clonal selection in aplastic anaemia and JAK2-mutant MPN and our findings suggest that this mechanism may be critical to clonal selection and dominance in MDS.
Resumo:
Chronic myeloid leukemia (CML) is characterized by the presence of the BCR::ABL1 fusion gene, leading to a constitutively active tyrosine kinase that drives the disease. Genomic instability is a hallmark of CML, contributing to disease progression and treatment resistance. A study identified SETD2, a histone methyltransferase, as frequently dysfunctional in advanced-phase CML, resulting in reduced trimethylation of Histone H3 at lysine 36 (H3K36Me3). This loss is associated with poor prognosis and increased genetic instability. Investigations revealed that SETD2 dysfunction is caused by post-translational modifications mediated by Aurora kinase A and MDM2, leading to proteasome-mediated degradation. Aurora kinase A phosphorylates SETD2, while MDM2 ubiquitinates it, targeting it for degradation. Inhibition of MDM2 and Aurora kinase A restored SETD2 expression and activity, suggesting potential therapeutic targets. Loss of SETD2 and H3K36Me3 impairs DNA repair mechanisms, favoring error-prone repair pathways over faithful ones, exacerbating genetic instability. Reintroduction of SETD2 into deficient cells restored DNA repair pathways, preserving genomic integrity. Analysis of CD34+ progenitor cells from CML patients showed reduced SETD2 levels compared to healthy individuals, correlating with decreased clonogenic capacity. Notably, SETD2 loss is not detectable at diagnosis but emerges during disease progression, indicating its role as an early indicator of CML advancement. Therapeutically, inhibitors targeting Aurora kinase A, MDM2, and the proteasome showed efficacy in cells expressing SETD2, particularly in those with low SETD2 levels. Proteasome inhibitors induced apoptosis and DNA damage in SETD2-deficient cells, highlighting their potential for CML treatment. In conclusion, SETD2 acts as a tumor suppressor in CML, with its dysfunction contributing to genetic instability and disease progression. Targeting the mechanisms of SETD2 loss presents promising therapeutic avenues for controlling CML proliferation and restoring genomic integrity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 x 10(6), CELL) intravenously 3 h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-beta, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Psoralen plus UVA (PUVA) is used as a very effective treatment modality for various diseases, including psoriasis and cutaneous T-cell lymphoma. PUVA-induced immune suppression and/or apoptosis are thought to be responsible for the therapeutic action. However, the molecular mechanisms by which PUVA acts are not well understood. We have previously identified platelet-activating factor (PAF), a potent phospholipid mediator, as a crucial substance triggering ultraviolet B radiation-induced immune suppression. In this study, we used PAF receptor knockout mice, a selective PAF receptor antagonist, a COX-2 inhibitor (presumably blocking downstream effects of PAF), and PAF-like molecules to test the role of PAF receptor binding in PUVA treatment. We found that activation of the PAF pathway is crucial for PUVA-induced immune suppression (as measured by suppression of delayed type hypersensitivity to Candida albicans) and that it plays a role in skin inflammation and apoptosis. Downstream of PAF, interleukin-10 was involved in PUVA-induced immune suppression but not inflammation. Better understanding of PUVA's mechanisms may offer the opportunity to dissect the therapeutic from the detrimental (ie, carcinogenic) effects and/or to develop new drugs (eg, using the PAF pathway) that act like PUVA but have fewer side effects.
Resumo:
Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.
Resumo:
Objective: To investigate if development of skeletal muscle fatigue during repeated voluntary biceps contractions could be attenuated by low-level laser therapy (LLLT). Background Data: Previous animal studies have indicated that LLLT can reduce oxidative stress and delay the onset of skeletal muscle fatigue. Materials and Methods: Twelve male professional volleyball players were entered into a randomized double-blind placebo-controlled trial, for two sessions (on day 1 and day 8) at a 1-wk interval, with both groups performing as many voluntary biceps contractions as possible, with a load of 75% of the maximal voluntary contraction force (MVC). At the second session on day 8, the groups were either given LLLT (655 nm) of 5 J at an energy density of 500 J/cm(2) administered at each of four points along the middle of the biceps muscle belly, or placebo LLLT in the same manner immediately before the exercise session. The number of muscle contractions with 75% of MVC was counted by a blinded observer and blood lactate concentration was measured. Results: Compared to the first session (on day 1), the mean number of repetitions increased significantly by 8.5 repetitions (+/- 1.9) in the active LLLT group at the second session (on day 8), while in the placebo LLLT group the increase was only 2.7 repetitions (+/- 2.9) (p = 0.0001). At the second session, blood lactate levels increased from a pre-exercise mean of 2.4 mmol/L (+/- 0.5 mmol/L), to 3.6 mmol/L (+/- 0.5 mmol/L) in the placebo group, and to 3.8 mmol/L (+/- 0.4 mmol/L) in the active LLLT group after exercise, but this difference between groups was not statistically significant. Conclusion: We conclude that LLLT appears to delay the onset of muscle fatigue and exhaustion by a local mechanism in spite of increased blood lactate levels.
Resumo:
Pothomorphe umbellata, a native Brazilian plant, is popularly known to be effective in the treatment of skin lesions. This benefit is attributed to 4-nerolidylcatechol (4-NC) a compound extracted from P. umbellata. Since melanomas show prominent resistance to apoptosis and exhibit extreme chemoresistance to multiple forms of therapy, novel compounds addressing induction of cell death are worth investigating. Here, we evaluated effects on cell cycle progression and possible cytotoxic activity of 4-NC in melanoma cell lines as well as human dermal fibroblasts. Inhibitory effects on cell invasion and MMP activity were also investigated. 4-NC showed cytotoxic activity for all melanoma cell lilies tested (IC(50) = 20-40 mu M, 24 h for tumoral cell lines: IC(50) = 50 mu M for fibroblast cell line) associated with its capacity to induce apoptosis. Furthermore, this is the first time that 4-NC is described as an inhibitor of cell invasiveness, due mainly to a G I cell cycle arrest and inhibition of MMP-2 activity in melanoma cell lines. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to investigate the involvement of caspases in apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. The isolation of LAAO involved three chromatographic steps: molecular exclusion on a G-75 column; ion exchange column by HPLC and affinity chromatography on a Lentil Lectin column. SDS-PAGE was used to confirm the expected high purity level of BatroxLAA0. It is a glycoprotein with 12% sugar and an acidic character, as confirmed by its amino acid composition, rich in ""Asp and Glu"" residues. It displays high specificity toward hydrophobic L-amino acids. The N-terminal amino acid sequence and internal peptide sequences showed close structural homology to other snake venom LAAOs. This enzyme induces in vitro platelet aggregation, which may be due to H(2)O(2) production by LAAOs, since the addition of catalase completely inhibited the aggregation effect. It also showed cytotoxicity towards several cancer cell lines: HL60, Jurkat, B16F10 and PC12. The cytotoxicity activity was abolished by catalase. A fluorescence microscopy evaluation revealed a significant increase in the apoptotic index of these cells after BatroxLAAO treatment. This observation was confirmed by phosphatidyl serine exposure and activation of caspases. BatroxLAAO is a protein with various biological functions that can be involved in envenomation. Further investigations of its function will contribute to toxicology advances. Published by Elsevier Inc.
Resumo:
Using light and electron microscopic histological and immunocytochemical techniques, we investigated the effects of the glucocorticoid dexamethasone on T cell and macrophage apoptosis in the central nervous system (CNS) and peripheral nervous system (PNS) of Lewis rats with acute experimental autoimmune encephalomyelitis (EAE) induced with myelin basic protein (MBP). A single subcutaneous injection of dexamethasone markedly augmented T cell and macrophage apoptosis in the CNS and PNS and microglial apoptosis in the CNS within 6 hours (h). Pre-embedding immunolabeling revealed that dexamethasone increased the number of apoptotic CD5+ cells (T cells or activated B cells), αβ T cells, and CD11b+ cells (macrophages/microglia) in the meninges, perivascular spaces, and CNS parenchyma. The induction of increased apoptosis was dose-dependent. Daily dexamethasone treatment suppressed the neurological signs of EAE. However, the daily injection of a dose of dexamethasone (0.25 mg/kg). which, after a single dose, did not induce increased apoptosis in the CNS or PNS, was as effective in inhibiting the neurological signs of EAE as the high dose (4 mg/kg), which induced a marked increase in apoptosis. This indicates that the beneficial clinical effect of glucocorticoid therapy in EAE does not depend on the induction of increased apoptosis. The daily administration of dexamethasone for 5 days induced a relapse that commenced 5 days after cessation of treatment, with the severity of the relapse tending to increase with dexamethasone dosage.
Resumo:
The taxane docetaxel is currently the most effective chemotherapeutic drug for the treatment of advanced breast cancer. However, a considerable proportion of breast cancer patients do not respond positively to docetaxel. The mechanisms of docetaxel resistance are poorly understood. Overexpression of ERBB2 occurs in 15-30% of breast tumors and is associated with chemoresistance to a variety of anticancer drugs. In the present study, we sought to identify genes involved in ERBB2-mediated chemoresistance to docetaxel. We generated SAGE libraries from two human mammary cell lines expressing basal (HB4a) and high (C5.2) levels of ERBB2 before and after intensive exposure to docetaxel and identified potential ERBB2 target genes implicated in a variety of cellular processes including cell proliferation, cell adhesion, apoptosis and cytoskeleton organization. Comparison of the transcriptome of the cell lines before and after docetaxel exposure revealed substantially different expression patterns. Twenty-one differentially expressed genes between HB4a and C5.2 cell lines, before and after docetaxel treatment, were further analyzed by qPCR. The alterations in the expression patterns in HB4a and C5.2 cell lines in response to docetaxel treatment observed by SAGE analysis were confirmed by qPCR for the majority of the genes analyzed. Our study provides a comprehensive view of the expression changes induced in two human mammary cells expressing different levels of ERBB2 in response to docetaxel that could contribute to the elucidation of the mechanisms involved in ERBB2-mediated chemoresistance in breast cancer.
Resumo:
We tested the hypothesis that bone marrow-derived mononuclear cells (BMDMCs) at an early phase of cecal ligation and puncture (CLP)-induced sepsis may have lasting effects on: (1) lung mechanics and histology, (2) the structural remodelling of lung parenchyma, (3) lung, kidney, and liver cell apoptosis, and (4) pro- and anti-inflammatory cytokines and growth factors. At day 1, BMDMC significantly reduced mortality, as well as caspase-3, interleukin (IL)-6 and IL-1 beta vascular endothelial growth factor, platelet-derived growth factor, hepatocyte growth factor, and transforming growth factor-beta, but increased IL-10 mRNA expression in lung tissue in septic mice contributing to endothelium and epithelium alveolar repair and improvement of lung mechanics. BMDMC also prevented the increase of apoptotic cells in lung, liver, and kidney. At day 7, these early functional and morphological effects were preserved or further improved. In conclusion, in the present model of sepsis, the beneficial effects of early administration of BMDMCs on lung and distal organs were preserved, possibly by paracrine mechanisms. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to test the hypothesis that bone marrow mononuclear cell (BMDMC) therapy led an improvement in lung mechanics and histology in endotoxin-induced lung injury. Twenty-four C57BL/6 mice were randomly divided into four groups (n = 6 each). In the acute lung injur;y (ALI) group, Escherichia coli lipopolysaccharide (LPS) was instilled intratracheally (40 mu g, IT), and control (C) mice received saline (0.05 ml, IT). One hour after the administration of saline or LPS, BMDMC (2 x 10(7) cells) was intravenously injected. At day 28, animals were anesthetized and lung mechanics [static elastance (E(st)), resistive (Delta P(1)), and viscoelastic (Delta P(2)) pressures] and histology (light and electron microscopy) were analyzed. Immunogold electron microscopy was used to evaluate if multinucleate cells were type II epithelial cells. BMDMC therapy prevented endotoxin-induced lung inflammation, alveolar collapse, and interstitial edema. In addition, BMDMC administration led to epithelial and endothelial repair with multinucleated type II pneumocytes. These histological changes yielded a reduction in lung E(st), Delta P(1), and Delta P(2) compared to ALI. In the present experimental ALI model, the administration of BMDMC yielded a reduction in the inflammatory process and a repair of epithelium and endothelium, reducing the amount of alveolar collapse, thus leading to an improvement in lung mechanics.
Resumo:
Emerging data reveal that oral estrogen therapy can increase clinic blood pressure (BP) in postmenopausal women; however, it is important to establish its effects on ambulatory BP, which is a better predictor for target-organ damage. Besides estrogen therapy, aerobic training is widely recommended for post-menopausal women, and it can decrease ambulatory BP levels. This study was designed to evaluate the effect of aerobic training and estrogen therapy on the ambulatory BP of post-menopausal women. Forty seven healthy hysterectomized women were randomly divided (in a double-blind manner) into 4 groups: placebo-control (PLA-CO = 12), estrogen therapy-control (ET-CO = 14), placebo-aerobic training (PLA-AT = 12), and estrogen therapy-aerobic training (ET-AT = 09). The ET groups received estradiol valerate (1 mg/day) and the AT groups performed cycle ergometer, 3x/week at moderate intensity. Hormonal status (blood analysis), maximal cardiopulmonary exercise test (VO(2) peak) and ambulatory BP (24-h, daytime and nighttime) was evaluated before and 6 months after interventions. A significant increase in VO(2) peak was observed only in women who participated in aerobic training groups (+4.6 +/- 1.0 ml kg(-1) min(-1), P=0.00). Follicle-stimulating hormone was a significant decreased in the ET groups (-18.65 +/- 5.19 pg/ml, P=0.00), and it was accompanied by an increase in circulating estrogen (56.1 +/- 6.6 pg/ml). A significant increase was observed in the ET groups for daytime (P=0.01) and nighttime systolic BP (P=0.01), as well as nighttime diastolic BP (P = 0.02). However, daytime diastolic BP was increased only in the ET-CO group (+3.4 +/- 1.2 mmHg, P=0.04), and did not change in any other groups. No significant effect was found in ambulatory heart rate. In conclusion, aerobic training abolished the increase of daytime ambulatory BP induced by estrogen therapy in hysterectomized, healthy, normotensive and postmenopausal women. (C) 2011 Elsevier Ireland Ltd. All rights reserved.