980 resultados para TEMPERATURE RANGE 0400-1000 K


Relevância:

100.00% 100.00%

Publicador:

Resumo:

he thermodynamic acitivity of chromium in liquid Cu-Cr alloys is measured in the temperature range from 1473 to 1873 K using the solid state cell: Pt, W, Cr + Cr2O3 |(Y2O3) ThO2|Cu - Cr + Cr2O3, Pt The activity of copper and the Gibbs energy of mixing of the liquid alloy are derived. Activities exhibit large positive deviations from Raoult's law. The mixing properties can be represented by a pseudo-subregular solution model in which the excess entropy has the same type of functional dependence on composition as the enthalpy of mixing: ΔGE = XCr(1 - XCr)[60880 - 18750 XCr)-- T(16.25 - 7.55 XCr)]J mol-1 Pure liquid Cu and Cr are taken as the reference states. The results predict a liquid-liquid metastable miscibility gap, with TC = 1787 (±3) K and XCr = 0.436 (±0.02), lying below the liquidus. The results obtained in this study are in general agreement with experimental information reported in the literature, but provide further refinement of the thermodynamic parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to identify the dominant mechanism of ionic conduction, the electrical conductivity and ionic mobility of the glasses (AgX)0.4(Ag2O)0.3(GeO2)0.3 (X = I, Br, Cl) were measured separately in the temperature range from 293 to 393 K by coupling the AC technique with the TIC method. Electronic conductivity was also measured at 293 K by the Wagner polarization method. The total electrical conductivity of these glasses was found to be as high as 10-1 Ω-1 m-1, and the mobility about 10-6 m2 V-1 s-1. The variation of total electrical conductivity and mobility at constant temperature and composition with the type of halide occurred in the sequence, Cl < Br < I. For each composition, both conductivity and mobility increased with temperature. The mobile ion concentration was found to be about 1023 m-3 at 293 K, and it was insensitive to the type of halide as well as temperature. The results suggest that the change in ionic conductivity with the temperature and the type of halide present is mainly attributable to the change in ionic mobility rather than carrier concentration. Moreover, the electronic conductivity was found to be about 10-6 Ω-1 m-1 at 293 K. Thus, the electronic contribution to the total conductivity is negligibly small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure, thennal expansion and electrical conductivity of the solid solutions YOgCao.2Fel-x MnxOJ+c5 (0 ~ x ~ 1.0) were investigated. All compositions had the GdFeOrtype orthorhombic perovskite structure with trace amounts of a second phase present in case of x = 0.8 and 1.0. The lattice parameters were detennined at room tempe'rature by using X-ray powder diffraction (XRPD). The pseudocubic lattice constant decreased with increasing x. The average I inear thermal expansion coefficient (anv) in the temperature range from 673 to 973 K showed negligible change with x up to x = 0.4. The thennal expansion curve for x = I had a slope approaching zero in the temperature range from 648 to 948 K. The calculated activation energy values for electrical conduction indicate that conduction occurs primarily by the small polaron hopping mechanism. The drastic drop in electrical conductivity for a small addition of Mn (0 ~ x ~ 0.2) is caused by the preferential fonnation of Mn4t ion~ (rather than Fe4 +) which act as carrier traps. This continues till the charge compensation for the divalent ions on the A-site is complete. The results indicate that with further increase in manganese content (beyond x =0.4) in the solid solutions, there is an increase in exc :::ss oxygen and consequently, a small increase in Mn'll il>I1~, which are charge compensated by the formation of cation vancancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase relations in the system Cu-Eu-O have been determined by equilibrating samples of different average composition at 1200 K and by phase analysis after quenching using optical microscopy (OM), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX). The equilibration experiments were conducted in evacuated ampoules and under flowing inert gas and pure oxygen. The Cu-Eu alloys were found to be in equilibrium with EuO. The higher oxides of europium, Eu3O4 and Eu2O3, coexist with metallic copper. Two ternary oxides CuEu2O4 and CuEuO2 were found to be stable. The ternary oxide CuEuO2, with copper in the monovalent state, can coexist with Cu, Cu2O, Eu2O3 and CuEu2O4 in different phase fields. The compound CuEu2O4 can be in equilibrium with Cu2O, CuO, CuEuO2, Eu2O3, and O2 gas under different conditions at 1200 K. Thermodynamic properties of the ternary oxides were determined using three solid-state cells based on yttria-stabilized zirconia as the electrolyte in the temperature range from 875 to 1250 K. The cells essentially measure the oxygen chemical potential in the three-phase fields: Cu+Eu2O3+CuEuO2, Cu2O+CuEuO2+CuEu2O4, and Eu2O3+CuEuO2+CuEu2O4. The thermodynamic properties of the ternary oxides can be represented by the equations: $\begin{gathered} {\raise0.5ex\hbox{$Couldn't find \end for begin{gathered} Thermogravimetric analysis (TGA) studies in Ar+O2 mixtures confirmed the results from emf measurements. An oxygen potential diagram for the system Cu-Eu-O at 1200 K was evaluated from the results of this study and information available in the literature on the binary phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streszczenie angielskie: Using solid oxide galvanic cells of the type: MnO + Sm2O3 + SmMnO3 / O-2/ Ni + NiO and Mn3O4 + SmMnO3 + SmMn2O5 / O-2 / air the equilibrium oxygen pressure for three-phase equilibria described by the following reactions of formation of ternary phases: MnO + 1/2Sm2O3 + 1/4O2 = SmMnO3 1/3Mn3O4 + SmMnO3 + 1/3O2 = SmMn2O5 was determined in the temperature range from 1173 to 1450 K. From the obtained experimental data the corresponding Gibbs free energy change for above reactions of phases formation was derived: ΔG0f,SmMnO3(+/ - 250J) = -131321(+/ - 2000) + 48.02(+/ - 0:35)T / K ΔG0f,SmMn2O5(+/ - 2000 J) = -107085(+/ - 2200) + 69.74(+/ - 1:70)T / K Using obtained results and available literature data, thermodynamic data tables for the two ternary phases have been compiled from 298.15 to 1400 K. Streszczenie polskie: W pracy przedstawiono wyniki badań dotyczące własności termodynamicznych manganinów samaru, wyznaczone metodą pomiaru SEM ogniw ze stałym elektrolitem: MnO + Sm2O3 + SmMnO3 / O-2/ Ni + NiO ogniwo I Mn3O4 + SmMnO3 + SmMn2O5 / O-2 / powietrze ogniwo II oraz określono równowagowe ciśnienie parcjalne tlenu dla reakcji tworzenia SmMnO3 i SmMn2O5 w zakresie temperatur 1173�1450 K: MnO + 1/2Sm2O3 + 1/4O2 = SmMnO3 1/3Mn3O4 + SmMnO3 + 1/3O2 = SmMn2O5 Z tych danych doświadczalnych wyznaczono zależności temperaturowe energii swobodnych tworzenia powyższych manganinów samaru: ΔG0f,SmMnO3(+/ - 250J) = -131321(+/ - 2000) + 48.02(+/ - 0:35)T / K ΔG0f,SmMn2O5(+/ - 2000 J) = -107085(+/ - 2200) + 69.74(+/ - 1:70)T / K W tablicach I i II zamieszczono dane termodynamiczne dla dwóch potrójnych faz otrzymane poprzez kompilacje własnych danych doświadczalnych z danymi literaturowymi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An isothermal section of the system Al2O3-CaO-CoO at 1500 K has been established by equilibrating 22 samples of different compositions at high temperature and phase identification by optical and scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy after quenching to room temperature. Only one quaternary oxide, Ca3CoAl4O10, was identified inside the ternary triangle. Based on the phase relations, a solid-state electrochemical cell was designed to measure the Gibbs energy of formation of Ca3CoAl4O10 in the temperature range from 1150 to 1500 K. Calcia-stabilized zirconia was used as the solid electrolyte and a mixture of Co + CoO as the reference electrode. The cell can be represented as: ( - )\textPt,\textCaAl 2 \textO 4 + \textCa 1 2 \textAl 1 4 \textO 3 3 + \textCa 3 \textCoAl 4 \textO 10 + \textCo//(CaO)ZrO 2 \text// \textCoO + \textCo,\text Pt ( + ). (−)PtCaAl2O4+Ca12Al14O33+Ca3CoAl4O10+Co//(CaO)ZrO2//CoO+Co Pt (+) From the emf of the cell, the standard Gibbs energy change for the Ca3CoAl4O10 formation reaction, CoO + 3/5CaAl2O4 + 1/5Ca12Al14O33 → Ca3CoAl4O10, is obtained as a function of temperature: \Updelta Gr\texto Unknown control sequence '\Updelta'/J mol−1 (±50) = −2673 + 0.289 (T/K). The standard Gibbs energy of formation of Ca3CoAl4O10 from its component binary oxides, Al2O3, CaO, and CoO is derived as a function of temperature. The standard entropy and enthalpy of formation of Ca3CoAl4O10 at 298.15 K are evaluated. Chemical potential diagrams for the system Al2O3-CaO-CoO at 1500 K are presented based on the results of this study and auxiliary information from the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical potentials of CaO in two-phase fields (TiO2 + CaTiO3), (CaTiO3 + Ca4Ti3O10), and (Ca4Ti3O10 + Ca3Ti2O7) of the pseudo-binary system (CaO + TiO2) have been measured in the temperature range (900 to 1250) K, relative to pure CaO as the reference state, using solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells were operated under pure oxygen at ambient pressure. The standard Gibbs free energies of formation of calcium titanates, CaTiO3, Ca4Ti3O10, and Ca3Ti2O7, from their component binary oxides were derived from the reversible e.m.f.s. The results can be summarised by the following equations: CaO(solid) + TiO2(solid) → CaTiO3(solid), ΔG° ± 85/(J · mol−1) = −80,140 − 6.302(T/K); 4CaO(solid) + 3TiO2(solid) → Ca4Ti3O10(solid), ΔG° ± 275/(J · mol−1) = −243,473 − 25.758(T/K); 3CaO(solid) + 2TiO2(solid) → Ca3Ti2O7(solid), ΔG° ± 185/(J · mol−1) = −164,217 − 16.838(T/K). The reference state for solid TiO2 is the rutile form. The results of this study are in good agreement with thermodynamic data for CaTiO3 reported in the literature. For Ca4Ti3O10 Gibbs free energy of formation obtained in this study differs significantly from that reported by Taylor and Schmalzried at T = 873 K. For Ca3Ti2O7 experimental measurements are not available in the literature for direct comparison with the results obtained in this study. Nevertheless, the standard entropy for Ca3Ti2O7 at T = 298.15 K estimated from the results of this study using the Neumann–Koop rule is in fair agreement with the value obtained from low-temperature heat capacity measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transport and magnetic properties of flux-grown Nd1−xPbxMnO3 single crystals (x=0.15–0.5) are studied in the temperature range 300–77 K and 280–2 K, respectively. Magnetization measurements with a superconducting quantum interference device confirm a paramagnetic to ferromagnetic transition around 110, 121, 150, 160, and 178 K for x=0.15, 0.2, 0.3, 0.4, and 0.5, respectively. Four probe resistivity measurements at low temperatures show a monotonic increase for x=0.15 which represents a ferromagnetic insulating (FMI) phase. For Nd0.8Pb0.2MnO3 there is a slope change present in the resistivity profile at 127 K where metal to insulator transition (MI) sets in. For x=0.3 this MI transition is more prominent. However, both these samples have FMI phase at low temperature. When the concentration of lead increases (x>0.3) the sample displays a clear insulator to metal transition with a low temperature ferromagnetic metallic phase. On the basis of these measurements we have predicted the phase diagram of Nd1−xPbxMnO3. Magnetization measurements by a vibration sample magnetometer point out the appreciable differences between zero field cooled and field cooled profiles below the ferromagnetic to paramagnetic transition temperature for all x. These are indicative of magnetic frustration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray powder diffraction along with differential thermal analysis carried out on the as-quenched samples in the 3BaO–3TiO2–B2O3 system confirmed their amorphous and glassy nature, respectively. The dielectric constants in the 1 kHz–1 MHz frequency range were measured as a function of temperature (323–748 K). The dielectric constant and loss were found to be frequency independent in the 323–473 K temperature range. The temperature coefficient of dielectric constant was estimated using Havinga’s formula and found to be 16 ppm K−1. The electrical relaxation was rationalized using the electric modulus formalism. The dielectric constant and loss were 17±0.5 and 0.005±0.001, respectively at 323 K in the 1 kHz–1 MHz frequency range which may be of considerable interest to capacitor industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and electrical properties of Eu2O3 films grown on Si(100) in 500–600 °C temperature range by low pressure metalorganic chemical vapor deposition are reported. As-grown films also possess the impurity Eu1−xO phase, which has been removed upon annealing in O2 ambient. Film’s morphology comprises uniform spherical mounds (40–60 nm). Electrical properties of the films, as examined by capacitance-voltage measurements, exhibit fixed oxide charges in the range of −1.5×1011 to −6.0×1010 cm−2 and dielectric constant in the range of 8–23. Annealing has resulted in drastic improvement of their electrical properties. Effect of oxygen nonstoichiometry on the film’s property is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal expansion of magnesium oxide has been measured below room temperature from 140°K to 284.5°K, using an interferometric method. The accuracy of measurement is better than 3% in the temperature range studied. The agreement of these results with Durand's is quite good, but consistently higher over most of the range by 2 or 3%, for the most part within the estimated experimental error. The Grüneisen parameter remains constant at about 1.51 over the present experimental range; but an isolated measurement of Durand at 85°K suggests that at lower temperatures it rises quite sharply above this value. This possibility is therefore investigated theoretically. With a non-central force model to represent MgO, γ(−3) and γ(2) are calculated and it is found that γ(−3) > γ(2), again suggesting that the Grüneisen parameter increases with falling temperature. Of the two reported experimental values for the infra-red absorption frequency, correlation with the heat capacity strongly indicates a wavelength of 25.26μm rather than 17.3μm. Thermal expansion measurements at still lower temperatures must be carried out to confirm definitely the rise in the Grüneisen parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-filled and Ge-doped Co4Sb12 skutterudites materials were synthesized by an induction melting process which was followed by annealing at 650 degrees C for 7 days. A structural, compositional, and morphological study was carried out by X-ray diffraction (XRD), electron probe micro analysis (EPMA), and scanning electron microscopy (SEM). The formation of a single skutterudite phase (delta-CoSb3) was confirmed by XRD and the composition of all the samples was verified by EPMA. The homogeneity and morphology of the samples was observed by potential Seebeck microprobe (PSM) and SEM, respectively. The PSM result confirmed the inhomogeneity of the samples. The temperature dependence of the Seebeck coefficient, electrical conductivity, and thermal conductivity were measured in the temperature range of 300-650 K. The samples of In0.16Co4Sb12-xGex (x = 0.05, 0.1, and 0.2) show a negative Seebeck coefficient confirming an n-type conductivity and the In0.16Co4Sb11.7Ge0.3 sample shows a positive Seebeck coefficient confirming a p-type conductivity. There was a change in the Seebeck coefficient from an n-type to a p-type at the doping concentration of x = 0.3 due to the excess Ge which increases in hole carrier concentration. Electrical conductivity decreases with an increase in Ge doping concentrations and with increases in temperature due to the bipolar effect. Thermal conductivity increases with an increase in carrier concentration and decreases when the temperature is increased. The highest ZT = 0.58 was achieved by In0.16Co4 Sb11.95Ge0.05 at 673K and In-filled and Ge-doped Co4Sb12 was not effective in improving the figure of merit. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677982]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hydrothermal reaction of cobalt nitrate, 4,4'-oxybis(benzoic acid) (OBA), 1,2,4-triazole, and NaOH gave rise to a deep purple colored compound Co-4(triazolate)(2)(OBA)(3)], I, possessing Co-4 clusters. The Co-4 clusters are connected together through the tirazolate moieties forming a two-dimensional layer that closely resembles the TiS2 layer. The layers are pillared by the OBA units forming the three-dimensional structure. To the best of our knowledge, this is the first observation of a pillared TiS2 layer in a metal-organic framework compound. Magnetic studies in the temperature range 1.8-300 K indicate strong antiferromagetic interactions for Co-4 clusters. The structure as well as the magnetic behavior of the present compound has been compared with the previously reported related compound Co-2(mu 3-OH)(mu(2)-H2O)(pyrazine)(OBA)(OBAH)] prepared using pyrazine as the linker between the Co-4 clusters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CuFe2O4 nanograins have been prepared by the chemical co-precipitation technique and calcined in the temperature range of 200-1200 degrees C for 3 h. A wide range of grain sizes has been observed in this sintering temperature range, which has been determined to be 4 to 56 nm. Formation of ferrite has also been confirmed by FTIR measurement through the presence of wide band near 600 and 430 cm(-1) for the samples in the as-dried condition. Systematic variation of wave number has been observed with the variation of the calcination temperature. B-H loops exhibit transition from superparamagnetic to ferrimagnetic state above the calcination temperature of 900 degrees C. Coercivity of the samples at lower calcination temperature of 900 degrees C reduces significantly and tends towards zero coercivity, which is suggestive of superparamagnetic transition for the samples sintered below this temperature. Frequency spectrum of the real and imaginary part of complex initial permeability have been measured for the samples calcined at different temperature, which shows wide range of frequency stability. Curie temperature, T-c has been measured from temperature dependence initial permeability at a fixed frequency of 100 kHz. Although there is small variation of T-c with sintering temperature, the reduction of permeability with temperature drastically reduce for lower sintering temperature, which is in conformity with the change of B-H loops with the variation of sintering temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical conductivity and Seebeck coefficient of calcium-doped YFeO3, a potential cathode material in solid oxide fuel cells (SOFC), are measured as function of temperature and composition in air to resolve conflicts in the literature both on the nature of conduction (n- or p-type) and the types of defects (majority and the minority) present. Compositions of Y1-xCaxFeO3-delta with x = 0.0, 0.025, 0.05 and 0.1 are studied in the temperature range from 625 to 1250 K. All Y1-xCaxFeO3-delta samples show p-type semiconducting behaviour. Addition of Ca up to 5% dramatically increases the conductivity of YFeO3; increase is more gradual up to 10%. A second phase Ca2Fe2O5 appears in the microstructure for Ca concentrations in excess of 11%.