921 resultados para Stochastic processes -- Mathematical models
Resumo:
The effects of flow induced by a random acceleration field (g-jitter) are considered in two related situations that are of interest for microgravity fluid experiments: the random motion of isolated buoyant particles, and diffusion driven coarsening of a solid-liquid mixture. We start by analyzing in detail actual accelerometer data gathered during a recent microgravity mission, and obtain the values of the parameters defining a previously introduced stochastic model of this acceleration field. The diffusive motion of a single solid particle suspended in an incompressible fluid that is subjected to such random accelerations is considered, and mean squared velocities and effective diffusion coefficients are explicitly given. We next study the flow induced by an ensemble of such particles, and show the existence of a hydrodynamically induced attraction between pairs of particles at distances large compared with their radii, and repulsion at short distances. Finally, a mean field analysis is used to estimate the effect of g-jitter on diffusion controlled coarsening of a solid-liquid mixture. Corrections to classical coarsening rates due to the induced fluid motion are calculated, and estimates are given for coarsening of Sn-rich particles in a Sn-Pb eutectic fluid, an experiment to be conducted in microgravity in the near future.
Resumo:
We propose a criterion for the validity of semiclassical gravity (SCG) which is based on the stability of the solutions of SCG with respect to quantum metric fluctuations. We pay special attention to the two-point quantum correlation functions for the metric perturbations, which contain both intrinsic and induced fluctuations. These fluctuations can be described by the Einstein-Langevin equation obtained in the framework of stochastic gravity. Specifically, the Einstein-Langevin equation yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. The homogeneous solutions of the Einstein-Langevin equation are equivalent to the solutions of the perturbed semiclassical equation, which describe the evolution of the expectation value of the quantum metric perturbations. The information on the intrinsic fluctuations, which are connected to the initial fluctuations of the metric perturbations, can also be retrieved entirely from the homogeneous solutions. However, the induced metric fluctuations proportional to the noise kernel can only be obtained from the Einstein-Langevin equation (the inhomogeneous term). These equations exhibit runaway solutions with exponential instabilities. A detailed discussion about different methods to deal with these instabilities is given. We illustrate our criterion by showing explicitly that flat space is stable and a description based on SCG is a valid approximation in that case.
Resumo:
Synchronization phenomena in large populations of interacting elements are the subject of intense research efforts in physical, biological, chemical, and social systems. A successful approach to the problem of synchronization consists of modeling each member of the population as a phase oscillator. In this review, synchronization is analyzed in one of the most representative models of coupled phase oscillators, the Kuramoto model. A rigorous mathematical treatment, specific numerical methods, and many variations and extensions of the original model that have appeared in the last few years are presented. Relevant applications of the model in different contexts are also included.
Resumo:
We analyze the collective behavior of a lattice model of pulse-coupled oscillators. By means of computer simulations we find the relation between the intrinsic dynamics of each member of the population and their mutual interactions that ensures, in a general context, the existence of a fully synchronized regime. This condition turns out to be the same as that obtained for the globally coupled population. When the condition is not completely satisfied we find different spatial structures. This also gives some hints about self-organized criticality.
Resumo:
In a recent paper, [J. M. Porrà, J. Masoliver, and K. Lindenberg, Phys. Rev. E 48, 951 (1993)], we derived the equations for the mean first-passage time for systems driven by the coin-toss square wave, a particular type of dichotomous noisy signal, to reach either one of two boundaries. The coin-toss square wave, which we here call periodic-persistent dichotomous noise, is a random signal that can only change its value at specified time points, where it changes its value with probability q or retains its previous value with probability p=1-q. These time points occur periodically at time intervals t. Here we consider the stationary version of this signal, that is, equilibrium periodic-persistent noise. We show that the mean first-passage time for systems driven by this stationary noise does not show either the discontinuities or the oscillations found in the case of nonstationary noise. We also discuss the existence of discontinuities in the mean first-passage time for random one-dimensional stochastic maps.
Resumo:
Two recently reported treatments [J. M. Porrà et al., Phys. Rev. A 44, 4866 (1991) and I. L¿Heureux and R. Kapral, J. Chem. Phys. 88, 7468 (1988)] of the problem of bistability driven by dichotomous colored noise with a small correlation time are brought into agreement with each other and with the exact numerical results of L¿Heureux and Kapral [J. Chem. Phys. 90, 2453 (1989)].
Resumo:
Estimation of soil load-bearing capacity from mathematical models that relate preconsolidation pressure (σp) to mechanical resistance to penetration (PR) and gravimetric soil water content (U) is important for defining strategies to prevent compaction of agricultural soils. Our objective was therefore to model the σp and compression index (CI) according to the PR (with an impact penetrometer in the field and a static penetrometer inserted at a constant rate in the laboratory) and U in a Rhodic Eutrudox. The experiment consisted of six treatments: no-tillage system (NT); NT with chiseling; and NT with additional compaction by combine traffic (passing 4, 8, 10, and 20 times). Soil bulk density, total porosity, PR (in field and laboratory measurements), U, σp, and CI values were determined in the 5.5-10.5 cm and 13.5-18.5 cm layers. Preconsolidation pressure (σp) and CI were modeled according to PR in different U. The σp increased and the CI decreased linearly with increases in the PR values. The correlations between σp and PR and PR and CI are influenced by U. From these correlations, the soil load-bearing capacity and compaction susceptibility can be estimated by PR readings evaluated in different U.
Resumo:
In this Contribution we show that a suitably defined nonequilibrium entropy of an N-body isolated system is not a constant of the motion, in general, and its variation is bounded, the bounds determined by the thermodynamic entropy, i.e., the equilibrium entropy. We define the nonequilibrium entropy as a convex functional of the set of n-particle reduced distribution functions (n ? N) generalizing the Gibbs fine-grained entropy formula. Additionally, as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free entropic oscillator. In the approach to the equilibrium regime, we find relaxation equations of the Fokker-Planck type, particularly for the one-particle distribution function.
Resumo:
The continuous-time random walk (CTRW) formalism can be adapted to encompass stochastic processes with memory. In this paper we will show how the random combination of two different unbiased CTRWs can give rise to a process with clear drift, if one of them is a CTRW with memory. If one identifies the other one as noise, the effect can be thought of as a kind of stochastic resonance. The ultimate origin of this phenomenon is the same as that of the Parrondo paradox in game theory.
Resumo:
The genes do not control everything that happens in a cell or an organism, because thermally induced molecular movements and conformation changes are beyond genetic control. The importance of uncontrolled events has been argued from the differences between isogenic organisms reared in virtually identical environments, but these might alternatively be attributed to subtle, undetected differences in the environment. The present review focuses on the uncontrolled events themselves in the context of the developing brain. These are considered at cellular and circuit levels because even if cellular physiology was perfectly controlled by the genes (which it is not), the interactions between different cells might still be uncoordinated. A further complication is that the brain contains mechanisms that buffer noise and others that amplify it. The final resultant of the battle between these contrary mechanisms is that developmental stochasticity is sufficiently low to make neurobehavioural defects uncommon, but a chance component of neural development remains. Thus, our brains and behaviour are not entirely determined by a combination of genes-plus-environment.
Resumo:
Beta coefficients are not stable if we modify the observation periods of the returns. The market portfolio composition also varies, whereas changes in the betas are the same, whether they are calculated as regression coefficients or as a ratio of the risk premiums. The instantaneous beta, obtained when the capitalization frequency approaches infinity, may be a useful tool in portfolio selection.
Resumo:
En este artículo, a partir de la inversa de la matriz de varianzas y covarianzas se obtiene el modelo Esperanza-Varianza de Markowitz siguiendo un camino más corto y matemáticamente riguroso. También se obtiene la ecuación de equilibrio del CAPM de Sharpe.
Resumo:
[spa] En este artículo hallamos fórmulas para el nucleolo de juegos de asignación arbitrarios con dos compradores y dos vendedores. Se analizan cinco casos distintos, dependiendo de las entradas en la matriz de asignación. Los resultados se extienden a los casos de juegos de asignación de tipo 2 x m o m x 2.
Resumo:
The effect of hydrodynamic flow upon diffusion-limited deposition on a line is investigated using a Monte Carlo model. The growth process is governed by the convection and diffusion field. The convective diffusion field is simulated by the biased-random walker resulting from a superimposed drift that represents the convective flow. The development of distinct morphologies is found with varying direction and strength of drift. By introducing a horizontal drift parallel to the deposition plate, the diffusion-limited deposit changes into a single needle inclined to the plate. The width of the needle decreases with increasing strength of drift. The angle between the needle and the plate is about 45° at high flow rate. In the presence of an inclined drift to the plate, the convection-diffusion-limited deposit leads to the formation of a characteristic columnar morphology. In the limiting case where the convection dominates, the deposition process is equivalent to ballistic deposition onto an inclined surface.